
Use of Code Refactoring Transformation in Software Advancement

Taimoor Hassan1*, Abrar Ahmed2, Mehmood Anwar3, Shahzaib Afzal4, Muhammad Mohsan5, Muhammad
Basit Ali Gilani6

1Department of Software Engineering, University of Central Punjab, Lahore, Pakistan.
2,3Department of Software Engineering, The University of Lahore, Lahore, Pakistan.

4,5Riphah Institute of Computing & Applied Sciences, Riphah International University, Islamabad,
Pakistan.

6Department of Computer Science, University of Central Punjab, Lahore, Pakistan.

Email: taimoor.hassan01@ucp.edu.pk

ABSTRACT:
 In this paper, the refactoring of Object-oriented code affects the software quality in some
ways. Reengineering, which means refactoring, is nearly always a good idea and is usually cheap; it
optimizes the structure where the behavior does not appear to the user to have changed. This advan-
tage makes it a subject of much research when as a tool for measuring the quality of software. It is
proposed that software requirements be addressed at this stage since rather specific requirements are
associated with higher-quality work. Refactoring is cost-effective when done during the development
phase, this is because requirements that may need refactoring are identified early. It is necessary to
note that our paper consists of five research questions and their answers. Some of the best practices
followed in case of requirements management include Collection of requirements, choosing relevant
requirements from the pool, further subversion of the selected requirements, placing the requirements
in order of priority, and numbering and documentation of the requirements. This methodology is then
implemented and results are attained at each phase of the study in the case of the Hotel Management
System.

KEYWORDS: Refactoring, Transformation, Primary Studies, Systematic Mapping Study,
Structured Query Language.

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 1

1. INTRODUCTION
In the eyes of the spectators, the plot of the topic
indicates the significant role of code refactoring
in quality assurance, growth in agility, and ease in
maintenance and sustainability. With the expan-
sions of software systems complexity, it is expect-
ed that the implementation of code refactoring as
a regular practice also increases, which would
improve speed and the spirit of innovation.
Refactoring as a process control concept has been
a component of software engineering for decades.
Originally, it was introduced by Martin Fowler
and it refers to the process of refactoring the code

that already exists to enhance its internal organiza-
tion. This has become important especially in
agile, which is characterized by frequent cycles
and improvement. Moreover, Code refactoring is
the process by which an existing code is changed
for the better in terms of quality standards but the
external interface remains the same. It is a way to
decrease the technical debt, make updates less
complex, and guarantee the software's further
maintainability. Essentially, the main reason to
refactor is the dynamic nature of the requirements
and technologies in use. Another disadvantage of
using software systems is that as the complexity

Hassan et al. LGURJCSIT 2024 ISSN: 2521-0122 (Online)
ISSN: 2519-7991 (Print)

LGU Research Journal of
Computer Science & IT

doi: 10.54692/lgurjcsit.2024.082558

 Vol (8): Issue (2), April June 2024

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 2

of the systems increases the management also
becomes a herculean task. Refactoring facilitates
the enhancement of the source code system in
various ways such as; enhancing flexibility,
reducing the number of defects, and increasing
the capacity of production among developers.
Furthermore, the problems of refactoring are
usually long and can make creating features take
significantly longer in the short term. Modifica-
tions to the code regarding its structure might
create new problems in the program. It is relative-
ly easier for stakeholders to get a handle on why
the refactoring has to be done as distinct from
seeing feature addition benefits.
Furthermore, this research aims to execute
inclusive methodical mapping research on
previous experimental studies to evaluate the
consequence of code refactoring activities for
object-oriented to measure the quality attributes
of the software.
Software maintenance is one of the exclusive and
intense struggles for activities of development of
software [1] [2]. Software maintenance higher in
cost shows the bad design quality of software [3].
In the maintenance phase of software, several
code modules are by mistake presented.
the developers [4]. These modules of code or
parts of code show the bad quality of software at
a later time due to several code changes [5] [6].
In this research, the author identified 13,283
articles relevant to the study from six digital
libraries. Later, they scrutinized research that is
based on several viewpoints, which include
abstract, title, and full text, using searching
manually and by reference. Further, they analyze
the quality of the study by selecting 142 Primary
Studies (PSs). They classify these primary
studies on behalf of the refactoring activities
influences. The author also discusses the numer-
ous refactoring activities such as quality
measures of software, statistical practices,
datasets, and quality attributes, working using
nominated PSs. Further, the author extracts the
testified software tools that forecast or evaluate
the influence of refactoring actions. They also
provide current and previous studies on the
outcome of code refactoring methods of
object-oriented to enhance the attributes of the
software quality.
In conclusion, they organize the distributed and
inconsistent discoveries to determine a list of
exposed problems and challenges that are
required to be addressed in the future. The
research problem which is addressed in this

research is that author extracts a clear picture by
constructing systematic research that analyzes and
reports the conclusions on the association amid
refactoring methods and the enhancement of
quality for object-oriented applications or
software. This paper is divided into different
sections, section II explains the related work, III
section elaborates on the research methods,
section IV defines the problem statement, V
section explains the proposed solution, section VI
shows the results, VII section explores the discus-
sion, and the last, summarize the overall paper in
conclusion section VIII.

2. LITERATURE REVIEW
Code refactoring impacts the software quality,
performance, and maintainability deeply, adding
the crucial components of a successful outcome.
It has a multitude of benefits such as better
readability, increase in performance, and flexibili-
ty but at the same time, it has its shortcomings, i.e.
introducing new bugs from other resource
consumptions. Hence, we need to come up with a
well-designed plan, communicate with the team,
and test the refactoring result before we decide to
move it to the main codebase [7].
Furthermore, the objective for recovery-focused
is just to enhance the level of technology as well
as the competitiveness of developers. Over the
previous two decades, several longitudinal experi-
ments were performed to examine the effect of
recompilation operations on technology efficien-
cy. The objective of this project [8] would be to
conduct an expected to be stable vulnerability
assessment of current academic research on the
role of expression application regression testing
practices on application performance parameters.
According to the findings, scientific work
observed a greater detrimental effect of recompila-
tion with application efficiency whereas research
was published across sectors. Except for consisten-
cy, difficulty, succession, mistake propensity, and
thermal dissipation, both consistency parameters
improved rather than degraded because of rewrit-
ing practices. Besides that, many performance
indicators investigated throughout research
papers provide dynamic influence on individual
requirements engineering operations, meaning
whether modification often does not increase
certain performance characteristics. The whole
research identifies the list of available problems
that need to be examined more deeply, such as a
scarcity of technical verification, the restricted
scope with provocation, and minimal device

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 3

 funding, just to name a few. Moreover, the study
consists of a comprehensive research methodolo-
gy analysis that describes, evaluates, and summa-
rizes its previous research evidence on the effect
of rewriting practices to graphical fidelity, only to
evaluate its latest developments while identifying
new research directions. To begin, they presented
an overview of both the programmer require-
ments engineering system. They then spoke
about the visualization study methodology that
was used to perform that applicable study contrib-
utes to certain phenomena under investigation
are searched using two techniques [9].
On the other hand, they started by searching
certain internet sources: Embedded Celia de,
Cochrane Library, Walther, Research gate,
PubMed, including Greene. Then, in all the five
most important famed publications, a physical
review was undertaken. We have used compari-
son-losing games to improve the accuracy of
their quest but reduce the chance of losing import-
ant information. The distribution of PSs by
presentation month revealed that assessing the
impact of recompilation practices for system
development has become a hot topic throughout
academia. Those findings suggest also that the
Transfer System and extraction Process, includ-
ing Extraction Group requirements engineering
practices, has received more attention from
investigators than many of the other require-
ments engineering operations [10].
Meanwhile, scholars have contributed less time
and effort towards designing machine learning
that can forecast their advantages from
programmed regression testing until it is imple-
mented. The impact of recompilation practices
on user-friendliness was measured and found
using a variety of various shaped samples applied
across many instrument computer languages.
Since only a few other Rag used computational
methods to investigate the importance of expect-
ed returns, they used a cast-a-ballot method to
combine their results more about the impact of
recompilation with computer efficiency. This
same effect from cumulative regression testing
practices for various system integration indica-
tors provides contradictory data, indicating that
computer modification often does not boost
certain application performance objectives.
Likewise, various configuration operations have
an opposing influence on global device consisten-
cy parameters. Eventually, they discovered how
analyzing the impact of recompilation over graph-
ical fidelity involves several measurements

including the order in which provocation is
applied, its user experience metric, and so forth.
Every element's variance may influence this
report's ultimate result. As a result, when planning
the analysis, that element ought to be seriously
evaluated [11].
However, the modification would be a popular
method of improving software efficiency. The
effect on something like a wide variety of comput-
er luxury homes, such as reproducibility, ease of
maintenance, and efficiency, was already
thoroughly investigated but quantified. They
evaluate the effect of some of the more standard
programming change management guidelines on
privacy laws inside this paper, utilizing protection
indicators that can measure safety first from the
perspective of future knowledge transfer [12].
Those statistics were estimated with each SQL
statement that used a fixed methodology we
created to examine extracted Separator dynamical-
ly. They used their Java programming language
analyzer on several applications that have been
remediated by the rules. Which pseudo-code
systems' updated indicators data suggest that
perhaps the programming updates used to have a
meaningful impact on data protection.
Integration testing, [13] the method of enhancing
the current program's functionality by modifying
its internal configuration whilst altering any
dynamic behavior, is often used to increase
computer consistency through optimizing seman-
tic layout, usability, and error reduction. This
relates to the reorganization of the admin tool
(qualities and both techniques) within other
categories. Modifying would be a common
practice of project implementation. For certain
web applications, such as Requirements Elicita-
tion, patching is considered the most important
aspect of both the agile methodology [25]. Adjust-
ments may be needed to maintain the computer's
reliability. Responding to rising standards, technol-
ogy keeps evolving throughout its lifespan. The
code becomes dysfunctional because of such a
development. Reduced technology could have
highly amplified transformations of both its
architecture. As a result, its expense of commit-
ment to repairs would have been greater. As a
result, there may be a critical requirement for
reliable applications. Only at the right points,
which reflect that greater degree of project
management, unacceptable uncertainty may
occur. At such a reduced scale, namely the grade
level, unnecessary volatility will occur. The funda-
mental feature regarding product design through

out Expression applications was its category.
Category consistency refers to how easily a
computer object may develop whilst maintaining
that structure, whereas technology stability refers
to how adaptable code would be to changing
requirements or environments even when
maintaining that structure. Computer structures
that have been well ought to be able to adapt
while requiring significant appropriate
adjustments [14].
Since structural modifications become complex
to maintain, code should always be built keeping
enhanced structural consistency considered in
mind. Since groups are indeed an important part
of the development infrastructure, programmers
must continue to put them in as soon as
reasonably practicable. Some criteria for the
category of design stabilization were identified.
Modifying technology requires a considerable
amount of funds. People argue which source
code becomes important because it increases
programmer efficiency throughout. That
requirement engineering process, on the other
hand, seems to have a unique effect on
user-friendliness. Computer programmers
normally create for specific architectural
purposes that might or might not be mutually
exclusive [15].
As a result, programmers must aim to create
robust applications in terms of improving the
development process for key calligraphers. There
have been no rules for computer programmers
that the recompilation techniques to be used in
time to retain code security. As a result, they must
investigate the impact of recompilation
approaches against computer stabilization but
classify such source code approaches according
to that observable impact upon system instability.
Its category becomes aimed at helping computer
developers through selecting suitable
configuration strategies for maintaining
consistent code [12]. The purpose of this article
would be to evaluate the effect of recompilation
upon category but structure stabilization, as well
as to suggest a grading system among rewriting
approaches that depend highly upon category but
structure stabilization. It will also inform
computer programming on whose recompilation
techniques are being used to preserve code
stability [16].
That benefit of responsive design in terms of
readability would be much less apparent inside
the brief period that can sometimes be believed,
based on the circumstances. In this analysis, they

examine how "spotless programming" source
code improves programmer efficiency inside a
technology platform including data structures
inside an educational factory [16]. Significant
rises or declines in intelligibility were found,
demonstrating that rapid rises in intelligibility are
not necessarily apparent. According to their
findings, adapting software can lead together in a
usability hit within a brief period if indeed the
mechanical reinforcement diverges according to
what programmers were becoming accustomed
to. Huge, lengthy software applications
sometimes tackle the issue of technological
complexity, which is exacerbated by implementa-
tion methods that end in difficult-to-maintain
coding [17]. The technological liability may be
justified; furthermore, unless the liability also is
not forgiven, the cost is always charged, who
serves the purpose with extra resources duration
by designers either neither learn nor modify
complicated programming. Thus, according to
Bennett, "that budget deficit of just an undistribut-
ed deployment will bring whole organizations to a
halt. "Modification is indeed a system software
reorganization strategy that could be used to pay
back intellectual liability. Reuse is said to boost
programmer morale, establish principles architec-
ture, render applications easy to learn, and even
assist programmers with finding glitches.
Matthews also makes the case that the composi-
tion of software affects high flexibility, but they
encourage programmers to stay aware of certain
software but write native apps. Even so, it has
already been acknowledged that only some
research has quantified its reported configuration
benefits, significantly about production efficiency.
When they evaluate its alleged configuration
benefits from just one arm as well as the limited
scientific data from the other, there is a lack of
information [8]. If additional innovations were
applied to both frameworks, several results show
how modification will result in improved efficien-
cy for many days, and therefore programmers
who do also get a stronger copy of the concept
[21]. That ongoing creation of the micro data
center also led to significant corporate expansion,
including software developers spread over several
regions. The program's exponential expansion,
and the total number of employees upon this, also
resulted in technological borrowing.

3. RESEARCH METHODS
In the research method step, they followed a
multi-stage shortlisting process for the selection

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 4

of 142 published research articles by December
2017. Proposed research questions are answered
by different aspects using the classification of
selected research articles. The vote-counting
method is applied to syndicate the results and
report the analysis in PSs. The proposed research
questions for this study are the following:

Figure 1: Research Questions

Several electronic databases are used in this
study, some of these are the following.
Firstly, they draw major search terms from
research questions, later in this research article
the author obtains synonyms, abbreviations list,
alternative spells, and core research terms. In the
final section, they combine the core search terms
using Boolean operators. For validation of the
initial search, the string author selects 20
research articles from databases that contain the
most relevant research articles. The search string
is constructed which needs a search for titles,
abstracts, and keywords of research articles. For
this purpose, they selected 20 research articles,
and only 11 out of 20 research articles were select-
ed by their initial string search. Different types of
searches are used by authors. These are the
following:

3.1. Automatic search
In this step, they execute search strings of the
articles in six electronic databases. In the first
automation search, 12,996 search results were
found. In the second phase, they found 287 more
articles, where the total number of search results
was updated to 13,283. These searches were
organized and managed using Zotero.

3.2. Manual search
For completeness of the articles list, they perform

a manual search analysis. This search results in
174 total articles in two phases, 161 and 13 search
results, respectively. Manual search results were
recorded using MS Excel spreadsheets after the
exclusion of unrelated articles. After this search,
both results were combined to eliminate the
duplicate search results.

3.3. Reference Verification
They independently perform references using the
manual examination of the reference list for the
129 applicable gained research articles.
The author set the Inclusion and exclusion
standards which were useful for searching the
articles that were not significant or related to core
work concerning research questions. After phase
1, both authors independently verify this criterion
using a set of 90 research articles arbitrarily from
automated examination results. After this, they
applied Cohen Kappa static [18] on another set of
90 research articles randomly. The author uses 7
stages to screen the articles, at stage 1, the author
performs automatic and manual searches from six
electronic databases. Search results were captured
automatically using Zoterol. In stage 2, the author
performs data cleaning of automatic exploration
outcomes and separates unrelated entries. At stage
3, the author merges the outcomes of in coopera-
tion automatic and manual explorations in MS
Excel spreadsheets.
At stage 4th, the authors rejected research articles
based on the article's titles. This process selects
1374 and 52 studies in Phase 1 and Phase 2
individually for further processing in step 5th. In
the 5th stage, they screened both authors autono-
mously on behalf of the abstracts. In stage 6th
both authors studied the complete manuscript of
247 and 37 research articles selected in both
phases correspondingly and performed an
inclusion and exclusion process on articles.
In the 7th stage, they verify references of selected
articles. Results from this step were additionally
distinguished on the behalf of abstracts and full
texts. Finally, 142 primary studies were involved
in the concluding list, and they extracted the
relevant data from these selected research articles.
Information obtained from a reading of these
articles was documented in a data abstraction
form. Items that are extracted from the individual
primary study are the following. Full references
from the PSs with title, author, publication title,
and year. For study classification, the author uses
4 phase approach for the classification of selected
PS into 7 facets which are research involvement

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 5

technique, study framework, refactoring
activities, quality measures of the software,
search method, focus, and datasets.

4. PROBLEM STATEMENT
Numerous software initiatives advance daily in
our sector of the software business. Given the
size of the investment in our nation, that is advan-
tageous for the industry. These days, practically
every firm uses a distinct software system to
carry out daily office operations and activities.
Thus, it is safe to state that not using and install-
ing software systems in any kind of organization
or business leads to a great deal of issues. The
nation's largest investor and contributor to the
growth of our businesses is the software sector.
As time goes on, the organization encounters a
growing number of software requirements-relat-
ed issues when developing software systems. It
can be very challenging to grasp requirements
when they are communicated by clients in their
natural language. Clients without literacy are the
primary problem with this. As a result, individu-
als fail to clearly state and articulate their needs
about the suggested system. These clients can be
found all over the place [19] to produce software
from software companies. Because of the client's
ambiguous criteria, the suggested program will
not be excellent in every way in the end. The
software development process is prone to numer-
ous fluctuations due to the significant communica-
tion and conversation gaps that exist between the
project team and the client. The client's lack of
literacy and improper clearance of the require-
ments are the primary causes of this.

5. PROPOSED SOLUTION
It is very important to exemplify the applicability
of the proposed approach as well as to prove its
efficiency for practical usage, so we reveal the
application and evaluation of the proposed
approach based on the case study of the Hotel
Management System. That is why in each stage
of the development when applying our approach,
we obtain tangible outcomes that describe the
effectiveness of requirements-driven strategies
with refactoring. The given case can be consid-
ered as a pilot for the demonstration of the results
that can be achieved by implementing suggested
strategies as the improvement of software quality
and enhancement of development productivity
are evident. Moreover, the suggested remedy for
a particular issue is discussed in section IV of this
section. Figure 2 below provides an overview of

the suggested solution, detailing how we will
create a software system that is error-free and
intelligible to both the customer and the
company's end user.

Figure 2: Used Approach

5.1. Requirement Gathering
Gathering the requirements should be the first step
of the suggested solution that has been provided.
requirements gathered using various methods or
sources, as section I explains. Since we are aware
of the client's lack of education and skill, we study
the client's business system, staff members, and
most importantly the end user who will be using
the suggested system firsthand. We also meet with
other staff members and company stakeholders to
precisely determine what the proposed system's
requirements are.

5.2. Filter Requirements
Filter the requirements once they have been
gathered. Requirements are separated into
functional and non-functional forms, sorted
sequentially, and filtered to remove false, unclear,
and unnecessary information.

5.3. Break Requirements
Once the requirements have been filtered, break
them down into smaller, more manageable pieces.
The software team found the requirement
formulation and analysis to be quite simple to
comprehend.

5.4. Prioritize Requirements
Sort the needs according to functionality at this
stage. Requirements that are basic and essential

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 6

are given priority over non-essential require-
ments. Prioritize the development of the
software's functionality. The early completion of
priority needs results in increased client satisfac-
tion.

4.5. Numbering the Requirements
The allocation of the numbering to slightly
prioritize the criteria is the most crucial phase in
this strategy. Typically, numerals like 1, 2, 3, 5,
6... n, are used for numbering. This will make it
simple for us to compare the requirements to
their quantity and begin working on them in the
form of development.

4.6. Requirement Documentation
Ultimately, all of the criteria will be documented
during this phase. Written requirements will be
very helpful in understanding the system,
tracking needs, all functionality, and how it is
used, in the future (should the requirements
change). The document will then be forwarded to
the development team so that the software system
may be developed. All processing needs to be
recorded since, upon project completion, the
client receives the recorded file, which explains
each step, its use, and its potential future use.

6. RESULTS
To determine the pertinent outcomes, we apply
the suggested solution to the Hotel Management
System case study.

6.1. Requirement Gathering
Initially, we gather all 12 requirements for this
case study, which are listed in table 1 below.
(NADRA: National Database and Registration
Authority).

Table 1: HMS Requirement Gathering

6.2. Filter Requirements
There are a total of 12 requirements, however,
after sorting through them, we remove any unnec-
essary information and separate them into the
functional and non-functional requirements for
the hotel management system, as shown in table 2
below.

Table 2: HMS Functional/Non-Functional

6.3. Break Requirements
In this stage, we dissect each criterion into the
smaller components listed in Table 2 above. But
functional requirements are the main emphasis of
our major.

Figure 3: Break HMS Requirements

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 7

Hotel Management System

R
eq

ui
re

m
en

ts

User login and password
Book room on ID card
Check authentication with NADRA
Payment through cash/credit card
Bank validation
External reservation guest
Check-out/ Check in
Time scheduling
Room cleaning staff
Booking confirmation message/email
Automated generated slip
Food facility record

Functional
Requirements

Non-Functional
Requirements

User login and password External reservation
guest

Book room on ID card Booking confirmation
message/email

Check authentication
with NADRA

Room cleaning staff

Payment through
cash/credit card

Time scheduling

Bank validation Food facility record
Check-out/ Check in -----

Automated generated
slip

6.4. Prioritize Requirements
We will be ranking the seven functional needs of
the HMS (Hotel Management System) shown in
Table 2 above at this step of the suggested
process.

 Figure 4: Prioritize Requirements

6.5. Numbering Requirements
The functional needs of the Hotel Management
System, which are listed in Table 3 below, are
being numbered in the virtually last stages of the
proposed system.

Table 3: Numbering Requirements

6.6. Requirement Documentation
At this stage, we will ultimately record every
need listed in Table 3 and hand the project over to
the Hotel Management software system develop-
ment team.

7. DISCUSSION
This research paper assesses the process of code
refactoring and its significance in improving the
quality of software. Concerning code refactoring
which is understood to be a constructive and
effective approach to enhance program codes and
performance, authors have not underestimated
that it has variable effectiveness [22]. Therefore,

the paper recommends that this approach be
adjusted because the selection of the refactoring
technique should relate to the nature and clarity of
the requirements of the software. This way, it is
seen that the majority of the issues can be handled
in the early phases of the development life-cycle,
provided that only the necessary and well-defined
functional requirements are targeted, thus making
the process of refactoring more effective [23].
The paper's section 4 considers the problems
found in software companies today, especially the
issue of code refactoring. Furthermore, in the
foremost part of Section V, a solution is presented
and it is highlighted the necessity of the refactor-
ing strategies that are matched with the nature of
the software project. This section takes a look into
various methods used for verifying and fine-tun-
ing the software requirements, along with keeping
stakeholders involved in the procedure. As the last
section of the paper, Section VI is to demonstrate
results by using a case study. Thus, a hotel
management system is chosen to apply the
approach. The case study here demonstrates that
the solution offered brings into being specific
advancements in software quality, return on invest-
ment, and achievement of the project goals.

8. CONCLUSION
In this section, we conclude the paper that is
staring at the effects of code refactoring on
software quality. Everyone knows that who
belongs to the software industry software quality
is a big challenge for software survival and its
credibility purpose [20]. Apply code refactoring
in such a way that does not affect the software
behavior and its output functionality. In another
section, we will move to code refactoring to
software requirements, because we know very
well that every time code refactoring does not
produce authentic results [24].
In the software requirement's structure, the whole
development is based on it. It is an earlier phase of
software development that uses the require-
ments-divided approach. Starting with gathering
the requirements from actual sources, then
filtering them, breaking them into relevant require-
ments, then allocating the numbers to break or
filter requirements, and then all these require-
ments convert into documented form and send to
the software development team. So, we can say
that the requirements phase is the most valued in
that we summarize the overall software project in
the earlier phase in the requirements form. Due to
the starting phase, it is not very expensive. If all

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 8

Number
Allocation

Requirements

1 User Login/Password
2 Check in/ Check out
3 Book the room
4 Validation by NADRA
5 Payments/Bank checking
6 Generate Slip

the requirements are valid and do not exist in any
ambiguity, then the developed software is most
probably error-free and based on client require-
ments.

9. FUTURE WORK
The future of code refactoring in software
engineering will be mainly driven by automation,
integrating these tasks with DevOps and invest-
ment into technical debt reduction, mature
architectures modularization, security intensifica-
tion, AI-based solution building, and educational
ecosystem construction. These will be the key
elements of more effective, fast-moving, and
secure software development, at the end stage of
improving the quality of software systems.

REFERENCES
[1] B. N. Van Vliet et al., “Direct and
indirect methods used to study arterial blood
pressure,” Journal of pharmacological and
toxicological methods, vol. 44, no. 2000, pp.
361–373, 2001.

[2] A. Hochstein et al., “Evaluation of
Service-Oriented IT Management in Practice,”
In Proceedings of ICSSSM'05. 2005 Internation-
al Conference on Services Systems and Services
Management, Vol. 1, pp. 80-84, 2004.

[3] S. M. H. Dehaghani, and N. Hajrahimi,
“Which Factors Affect Software Projects Mainte-
nance Cost More ?,” Acta Informatica Medica,
vol. 21, no. October 2012, pp. 63–66, 2013, doi:
10.5455/aim.2012.21, , 2013.

[4] M. Kessentini et al., “Many-Objective
Software Remodularization using NSGA-III,”
ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 3, pp.1-45,
2015.

[5] E. F. Brown et al., “CRUSTAL HEAT-
ING AND QUIESCENT EMISSION FROM
TRANSIENTLY ACCRETING NEUTRON
STARS Edward F. Brown, Lars Bildsten, and
Robert E. Rutledge 1,” The Astrophysical
Journal, vol. 504, no. 2, pp. 1996–1999, 1998.

[6] A. Yamashita and L. Moonen, “Do code
smells reflect important maintainability
aspects ?,” In 2012 28th IEEE international
conference on software maintenance (ICSM), pp.
306-315

[7] M. Abebe and C. Yoo, “Trends , Opportu-
nities and Challenges of Software Refactoring : A
Systematic Literature Review,” international
Journal of software engineering and its Applica-
tions, vol. 8, no. 6, pp. 299–318, 2014.

[8] S. Kaur and P. Singh, “The Journal of
Systems and Software How does object-oriented
code refactoring influence software quality ?
Research landscape and challenges,” Journal of
Systems and Softwar, vol. 157, pp.110394, doi:
10.1016/j.jss.2019.110394, 2019.

[9] F. Coelho et al., “Refactoring-Aware
Code Review : A Systematic Mapping Study,” In
2019 IEEE/ACM 3rd Int. Work. Refactoring, pp.
63–66, doi: 10.1109/IWoR.2019.00019, 2019.

[10] A. Ouni et al., “Multi-Criteria Code
Refactoring Using Search-Based Software
Engineering : An Industrial Case Study,” ACM
Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, pp.1-53,
2016.

[11] M. Paixão et al., “Behind the Intents : An
In-depth Empirical Study on Software Refactor-
ing in Modern Code Review,” In Proceedings of
the 17th International Conference on Mining
Software Repositories, pp. 125–136, 2020.

[12] B. Alshammari et al., “Security Assess-
ment of Code Refactoring Rules,” In WIAR 2012;
National Workshop on Information Assurance
Research, pp. 1-10, 2012.

[13] M. Alshayeb, “The Impact of Refactor-
ing on Class and Architecture Stability,” Journal
of Research and Practice in Information Technolo-
gy, vol. 43, no. 4, pp.269-284, 2011.

[14] G. Szoke et al., “Designing and Develop-
ing Automated Refactoring Transformations : An
Experience Report,” In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), Vol. 1, pp.
693-697, doi: 10.1109/SANER.2016.17, 2016.

[15] H. Mumtaz, et al., “An empirical study
to improve software security through the applica-
tion of code refactoring,” Inf. Softw. Technol., vol.
96, pp. 112–125, doi: 10.1016/j.inf-
sof.2017.11.010, , 2018.

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 9

[16] E. Ammerlaan and A. Zaidman, “Old
Habits Die Hard : Why Refactoring for Under-
standability Does Not Give Immediate Benefits,”
In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering
(SANER), pp. 504–507, 2015.

[17] P. Techapalokul and E. Tilevich, “Code
Quality Improvement for All : Automated Refac-
toring for Scratch,” 2019 IEEE Symp. Vis. Lang.
Human-Centric Comput., pp. 117–125, 2019.

[18] J. Cohen, “A COEFFICIENT OF
AGREEMENT FOR NOMINAL SCALES,”
Educational and psychological measurement,
vol. 20, no. 1, pp. 37–46, 2016.

[19] D. Damian et al., “An Industrial Case
Study of Immediate Benefits of Requirements
Engineering Process Improvement at the Austra-
lian Center for Unisys Software,” Empirical
Software Engineering, pp. 45–75, 2007.

[20] G. Lacerda et al., “Code smells and
refactoring: A tertiary systematic review of
challenges and observations,” J. Syst. Softw., vol.
167, pp.110610, doi: 10.1016/j.jss.2020.110610,
2020.

[21] A. Almogahed, Mahdin et al., “A
refactoring categorization model for software
quality improvement,” Plos one, vol. 18, no. 11,
pp. e0293742, 2023.

[22] B. Nyirongo et al., “A Survey of Deep
Learning Based Software Refactoring,” arXiv
preprint arXiv:2404.19226, 2024.

[23] E. A. AlOmar et al., “How to refactor
this code? An exploratory study on develop-
er-ChatGPT refactoring conversations,” In
Proceedings of the 21st International Conference
on Mining Software Repositories, pp. 202-206,
April 2024.

[24] A. C. Bibiano et al., “Composite refactor-
ing: Representations, characteristics and effects
on software projects,” Information and Software
Technology, 156, pp. 107134, 2023.

[25] N. Raeesinejad et al., Refactoring. In
The Ignite Project: A Journey in Scrum, pp.
168-179, Singapore: Springer Nature Singapore,
2023.

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (2), LGURJCSIT 10

