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ABSTRACT: 
 Traditional cancer treatment methods have become less effective due to the increasing diversi-
ty of cancer types. To address this, precision medicine has gained support within the medical communi-
ty. This approach tailors treatment to individual patients based on their specific disease characteristics. 
However, a major challenge lies in accurately predicting how a patient will respond to a specialized 
drug. Numerous machine learning-based predictive systems have been developed to address this 
challenge. These systems utilize genomic signatures and the chemical structure of drugs to predict 
drug activity. In this paper, we introduce a Multi-Layer Perceptron (MLP) based system for predicting 
the response of anticancer drugs. Our system utilizes hybrid features derived from both genetic expres-
sion and the chemical structure of drugs. It is developed using the well-known GDSC dataset (Genom-
ics of Drug Sensitivity in Cancer). Our system achieved a lower Root Mean Square Error (RMSE) 
value of 0.889, in contrast to the RMSE value of 0.983 obtained by the current state-of-the-art (SOTA) 
system, SwNet. This indicates superior predictive accuracy. The findings suggest that our proposed 
research holds promise for the development of targeted drugs for anticancer treatments.
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1. INTRODUCTION
Cancer ranks among the leading causes of mortali-
ty globally, with approximately 19.3 million new 
cases and around 10 million cancer-related deaths 
reported in 2020 [1,2]. Given its significant 
impact, cancer has been a focal point of both 
biological and clinical investigations. Scientists 
have long explored the underlying mechanisms 
of cancer development, particularly the interplay 
between genetic and epigenetic factors. Notable 
indicators of cancer include dysfunctional gene 
activity and altered gene expression patterns. 
Increasing evidence suggests that acquired 
epigenetic irregularities, alongside genetic 
mutations, contribute to the onset of cancer [3]. 
Mainstream cancer treatments encompass surge-

ry, cytotoxic chemotherapy, targeted therapy, 
radiation therapy, endocrine therapy, and immuno-
therapy [4]. Despite advancements, patients, 
especially those with advanced cancer, often face 
relapse following treatment [5]. Immune 
resistance to conventional chemotherapy and 
medications remains a significant challenge in 
cancer treatment. Traditional chemotherapeutic 
drugs function by damaging cancer cell DNA, but 
their non-specific nature and high toxicity pose 
limitations. Until recently, cancer treatments were 
uniformly prescribed based solely on the cancer 
type, adopting a one-size-fits-all approach. For 
instance, clinical trials across 15 different cancer 
types led to the approval of Pembrolizumab for 
treating solid tumors with high microsatellite 
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instability or mismatch repair deficiency [6]. 
Another approved medication, Larotrectinib, 
targets the tropomyosin receptor kinase gene 
fusion prevalent in numerous cancers [7]. Howev-
er, the scarcity of comprehensive cancer datasets 
often necessitates the utilization of conventional 
treatments [8]. Consequently, there is a decline in 
prognoses and a subsequent rise in cancer mortali-
ty rates [9]. However, the introduction of person-
alized medicine has revolutionized cancer 
treatment methodologies. With vast genomic 
databases now accessible, precision oncology 
has emerged as a treatment approach. This 
method takes into account a patient's genetic 
makeup and biomarkers when formulating 
therapeutic recommendations. The first FDA 
approval for such personalized treatment 
occurred in 2017 when Pembrolizumab was 
sanctioned for treating solid tumors with high 
microsatellite instability or mismatch repair 
deficiency. Clinical trials across 15 different 
cancer types supported this approval [10]. Anoth-
er effective medication, Larotrectinib, targets the 
tropomyosin receptor kinase gene fusion found 
in numerous tumors [4]. However, many antican-
cer drug molecules lack well-established 
biomarkers, posing a challenge. Even targeted 
therapies, in addition to commonly used 

Figure1: Schematic representation of a 
Multi-Layer Perceptron (MLP) with a single 

Hidden Layer

cytotoxic drugs, face difficulties in identifying 
accurate biomarkers. This is because 
pharmacological targets alone often fall short as 
therapeutic indicators [11].
The paper is structured as follows: In Section 2, 
we outline the methodologies employed by 
previous researchers for drug response 
prediction. Section 3 details our proposed 
methodology. Section 4 presents the 
experimental results, followed by the conclusion.

2. RELATED WORK
In the fields of bioinformatics and chemo-infor-
matics, machine learning has emerged as a crucial 
research tool. Utilizing statistical, probabilistic, 
and optimization techniques, machine learning 
models analyze complex patterns within large, 
noisy datasets [5]. These models can be utilized 
for various purposes, including disease detection, 
diagnosis, prognosis, and drug discovery. Given 
advancements in genomics and molecular 
biology, personalized medicine has gained 
traction as researchers seek correlations between 
an individual's biological characteristics and 
treatment responses (biomarkers). The primary 
focus of cancer therapy is the identification of 
biomarkers [12]. The computational biology 
community has made substantial advancements in 
constructing predictive models that correlate an 
individual's genomic data with pharmacological 
responses, spurred by the availability of large 
datasets. Numerous machine learning techniques 
have been explored for building these models, 
including kernel models, sparse linear/non-linear 
models, elastic net regularized matrix factoriza-
tion, network-based models, and ensemble 
models [13]. A simplified representation of a 
feedforward neural network, depicted in Figure 1, 
illustrates the data flow from the input layer 
through hidden layers to the output layer, provid-
ing predictive results. This research has yielded 
promising results, demonstrating the efficacy of 
algorithms, the predictive potential of various 
genomic data. 

Figure 2: the overall architecture of proposed 
prediction model
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Figure 2 shows, the overall architecture of our 
proposed prediction model. The chemical 
structure in SMILE format and gene expression 
features serve as inputs. Both input vectors are 
concatenated and fed to the MLP for prediction 
of the drug’s IC50 values for the given cell 
line.formats, and the advantages of leveraging 
prior knowledge [14]. Certain studies have 
integrated drug chemical structures as input for 
predicting medication bioactivity [15], while 
others have combined genomic data and 
chemical signatures in prediction models, 
resulting in high accuracy in forecasting IC50 
values [16,17].

2.1. Proposed prediction system 
In this paper, we introduce a Multi-Layer 
Perceptron (MLP) based system for predicting 
anticancer drug response. Our system utilizes 
hybrid features derived from genetic expression 
and drug chemical structure. The predictive 
model is developed using the Genomics of Drug 
Sensitivity in Cancer (GDSC) dataset. Through 
comparative analysis, we validate the enhanced 
performance of our model compared to other 
existing models. The multi-layer perceptron 
(MLP) is an adaptation of feed-forward neural 
networks, featuring input, hidden, and output 
layers [8]. Input data is received by the input 
layer, while the output layer handles tasks like 
prediction and classification. Hidden layers, 
situated between input and output layers, 
constitute the computational core of the MLP. 
Data in an MLP flows from the input layer to the 
output layer, akin to feed-forward neural 
networks. Training of MLP neurons employs the 
backpropagation learning algorithm. MLPs excel 
at solving non-linear problems and can 
approximate any continuous function. Main 
applications of MLP include pattern 
categorization, recognition, prediction, and 
approximation. See Figure 1 for a schematic 
representation of a Multi-Layer Perceptron with 
a single hidden layer. We have constructed a 
machine learning model utilizing the 
Multi-Layer Perceptron framework. The model 
integrates two distinct datasets: one containing 
drug molecular data, and the other comprising 
patient cell line information represented by 
various gene expressions. Our model is capable 
of forecasting the body's reaction to different cell 
lines by computing the IC50 values of 
administered drugs, which signify the minimal 
concentration inducing 50% cell death. 

2.2. Datasets Preprocessing stage
The initial phase of the proposed methodologyin-
volves preprocessing the input datasets. Specifical-
ly, we retrieve data from the Genomics of Drug 
Sensitivity in Cancer (GDSC) dataset [9]. This 
widely recognized dataset provides comprehen-
sive information for studying cancer biology and 
predicting medication responses in individual 
patients. The GDSC dataset encompasses over 
75,000 experiments examining the effects of 138 
anticancer drugs on more than a thousand cell 
lines from diverse cancer types. Additionally, 
baseline data includes information on gene copy 
number, expression, and somatic mutations in 75 
cancer-related genes [18]. The chemical structures 
of compounds listed in GDSC are sourced from 
PubChem [19]. To preprocess the input data for 
our model, we initially acquired the Simplified 
Molecular Input Line Entry System (SMILES) 
representation of compounds from PubChem. 
SMILES is a format used to represent three-dimen-
sional structural information in a machine-read-
able manner. Subsequently, we converted the 
SMILES representation of each compound into 
Morgan Fingerprints using RDKit [20]. This 
conversion aimed to align the compounds with a 
mathematical notation. We then calculated the 
similarity between chemical compounds using the 
Tanimoto coefficient. Drug sensitivity with 
respect to its corresponding cell lines was 
assessed by predicting the IC50 values of the 
compounds.

2.3. Model development stage
In the second stage of our proposed approach, we 
trained Multi-layer Perceptron (MLP) models 
using two sets of input data: molecular structures 
of chemical drugs represented by Morgan Finger-
prints, and gene expression data from GDSC. Our 
model architecture comprises a 5-layer MLP 
neural network with specific neuron counts in 
each layer: 800 neurons in the first layer, 400 
neurons in the second layer, 200 neurons in the 
third layer, 50 neurons in the fourth layer, and 1 
neuron in the fifth (final) layer. We opted for the 
Parametric Rectified Linear Unit (PReLU) activa-
tion function for improved generalization, which 
outperformed other activation functions. A formal 
mathematical definition for PReLU is presented 
follow.
 

(1)



Here yi is any input at the ith channel, ai is 
negative slope:
if aᵢ=0, f behaves as ReLU
if aᵢ>0, f behaves leaky ReLU
if aᵢ is a learnable parameter, f behaves like 
PReLU.

 f(yi) = {         if  yi              (2)

Given the large dataset volume, we applied Batch 
Normalization and included a dropout layer to 
prevent overfitting. To evaluate the model's 
performance, we employed 10-fold cross-valida-
tion during training and testing.

2.4. Results and discussion
To assess the performance of our proposed 
system against existing models, we selected four 
previously published state-of-the-art models that 
were trained and tested on the GDSC dataset. Our 
model demonstrated superior accuracy in predict-
ing IC50 values compared to these models. The 
relative performance of our model compared to 
others, measured in terms of mean square error 
(MSE), is summarized in Table 1.
Table 1 performance comparison with previously 
models, bold results are denoting best among all 
participating in comparison.

Table 1: performance comparison with previous-
ly models, bold results are denoting best among 

all participating in comparison

• Kernelized Bayesian Multi-Task Learning 
(KBMTL): This method combines binary classifi-
cation or regression with kernel-based non-linear 
dimensionality reduction to create a novel Bayes-
ian approach [21].
•   Similarity Regularization Matrix Factorization 
(SRMF): Utilizing chemical structures of drugs 
and baseline levels of gene expression in various 
cell lines, this model predicts the anticancer drug 
responses of respective cell lines [22].

•  Self-Attention Gene Weight Layer Network

(SWnet): SWnet compiles the chemical drugs 
dataset using a graph neural network (GNN) 
training model, while the cell line dataset is 
trained with a convolutional neural network 
(CNN). Both datasets are then merged into a 
single dataset for predicting IC50 values [23].
In our study, we conducted several experiments to 
evaluate the performance of our machine learning 
model. Initially, we trained our system using 
XGBoost and optimized key parameters to 
enhance prediction accuracy. The best result 
achieved with this model was a mean square error 
(MSE) of 1.256. In the second experiment, we 
trained our model using an MLP-based approach, 
which resulted in an improved MSE of 0.956. 
Finally, we applied 10-fold cross-validation to 
further refine our MLP model, achieving the 
lowest MSE of 0.889. Our proposed machine 
learning model demonstrated superior 
performance, with a lower MSE of 0.889 
compared to other prediction models, including 
SRMF, KBMTL, XGboost, and SWnet, as 
depicted in Table 1.

3. CONCLUSION
In this study, we introduced an MLP-based 
machine learning model that utilizes two distinct 
types of data from the GDSC dataset: gene 
expressions and chemical structures of drugs. The 
chemical structural information is transformed 
into mathematical descriptors derived from 
SMILES notation and 3D chemical structures. 
Our model demonstrates enhanced accuracy in 
predicting IC50 values compared to previously 
published state-of-the-art (SOTA) models, 
achieved a Root Mean Square Error (RMSE) 
value of 0.889, in contrast to the RMSE value of 
0.983 obtained by the current state-of-the-art 
(SOTA) system, SwNet. This indicates superior 
predictive accuracy. The findings suggest that our 
proposed research holds promise for the 
development of targeted drugs for anticancer 
treatments, with the continual growth of available 
data, our aim is to deploy our model on larger 
datasets in the future to further improve its 
performance. Our model represents a significant 
advancement for researchers in the field of 
precision medicine and cancer therapy.
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