
Formal modelling and verification of autonomous reasoning based
flight simulation system

Abdullah1*, Hafiz Mahfooz Ul Haque2, Nida Hafeez3

1Department of Computer Science, Bahria University Lahore Campus, Lahore, Pakistan.
2Faculty of IT & CS, University of Central Punjab, Lahore, Pakistan.

3University of Science and Technology of China, China.

Email: abdullah.bulc@bahria.edu.pk

ABSTRACT:
 The emerging trends towards intelligent computing have drastically changed the human
lifestyle in every facet of their lives. Due to the swift escalation of smart systems and emerging technolo-
gies, human life has become much more dependent and even more addicted to fulfilling their desire
using smart and tiny resource-bounded gadgets. This revolution has evolved towards autonomous
decision support systems. Autonomous decision support systems can acquire information autonomous-
ly, reason the information, and adapt behavior accordingly. As these systems are deployed in a highly
decentralized environment and exhibit complex adaptive behavior, however, the inconsistent nature of
information may raise different challenging issues. This paper presents a multi-agent environmental-
ly-aware framework for modeling and reasoning flight management systems. This system has a sound
reasoning mechanism to execute and monitor flight control activities while considering liveness and
safety-critical constraints. We use the UPPAAL model checker to formally analyze the system’s behav-
ior and verify its correctness properties.

KEYWORDS: Autonomous Reasoning, Multi-agent, Model Checking, UPPAAL

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 25

1. INTRODUCTION
Recent years have witnessed the significant
contributions of Unmanned aerial vehicles
(UAVs) with great interest in industrial usage and
wide utilization carrying small objects in remote
areas where the surrounding environment is not
well supported for human beings. UAVs have
been anticipated as manned aircraft equipped
with smart sensors, communication equipment,
cameras, and intelligent decision-making
capability to take the right action at the right time
and in the right place. However, these systems are
highly sensitive in nature and may cause the loss
of huge investment in case of failure. The
research community has introduced formal model
checking and verification techniques to test the
system well before its actual launch. Model
checking has been widely used by the industry
and scientific community in different domains

such as healthcare, safety-critical systems, and
aviation systems, for formal modeling and
verification to determine whether the system
meets the desired specifications or not. The
ultimate purpose is to verify the correctness
behaviors in terms of hardware, software, and a
joint venture of interactive cross-platform devices
and systems. Literature has revealed a significant
number of formal modeling techniques deployed
in a variety of systems including avionics,
healthcare, defense systems, etc. In [1], Fremont
et.al. have proposed a rigorous design model of
autonomous safety-critical systems. For formal
analysis, the VERIFAI toolkit has been used for
modeling, falsification, debugging, and overall
evaluation process. A case study of aircraft
taxiing systems has been modeled and
probabilistic reasoning-based systems are
deployed to track the runway centerline traffic

Abdullah et al. LGURJCSIT 2024 ISSN: 2521-0122 (Online)
ISSN: 2519-7991 (Print)

LGU Research Journal of
Computer Science & IT

doi: 10.54692/lgurjcsit.2024.081519

Vol (8): Issue (1), January March 2024

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 26

flow system. Authors in [2], have discussed UAV
simulations in multi-agent systems along with
their challenging issues including autonomy,
security, validation, and verification of the
systems. In another work [3], the design flow of a
flight control system has been presented using
distributed devices connected using a digital
communication channel. The system was verified
by the B model to specify the logic model of the
system and verify its properties. In this work, we
propose an autonomous flight control system that
can perform different flight control missions and
verify the correct behavior of the system. For
formal analysis, model checking and formal
verification, the case study has been simulated
using UPPAAL model checker with the
accentuation on properties like safety, liveness,
robustness, and deadlock. The proposed flight
control system is better than the conventional
systems in the sense that we incorporate formal
verification properties to ensure safety, liveness,
robust properties, and deadlock resistance. To
realize this goal, we utilize the power of formal
analysis tools, i.e. UPPAAL model checkers, that
include model checkers and formal verifications.
The rest of the paper is structured as follows:
Section II presents the related work considering
smart flight management systems. In Section III,
we present a formalism for a smart flight
management system along with its architectural
specifications. In Section IV, we model the case
study in UPPAAL model checker and Section V
specifies the system behavior and verifies its
correctness properties. We finally conclude in
Section VI.

2. RELATED WORK
Literature has revealed a significant number of
intelligent systems along with autonomous
reasoning techniques. Autonomous
reasoning-based intelligent assistive systems
facilitate systems and users to achieve their goals
[4-6]. In [6], authors have presented a formal
ATC system model for regulating aircraft flow on
two runways using Hierarchical Timed Color
Petri Nets, demonstrating feasibility and
correctness. While focusing on FCFS scheduling,
studies investigate advanced techniques,
real-time data integration, and collaborative
decision-making to improve efficiency and
scalability in different runway operations under
varying traffic situations [6]. Skorupski in [7],
has proposed the conceptual airport traffic
operational model using timed, colored, and

stochastic Petri nets with an emphasis on airside
capacity, operational delay, and safety issues. The
simulation tests shed light on the impact of initial
landing formations as well as prospective
improvements to the takeoff and landing
procedures. The proposed system has been
elaborated with the example of the airport with
one runway and multiple takeoffs and landing
operations. The CPN tool has been used to
simulate the experiment taking-off and landing
operations simultaneously. Su et al. have
proposed a Coloured Petri Net to model and
simulate the aircraft's operational activities such
as directing aircraft movement on the ground
surface and parking along with constraints
considering taxiing estimation system. It creates
static and dynamic Petri net models, which
incorporate taxiing velocity constraints and
simulate conflict-free taxiing. They have modeled
and simulated the experiment at Toulouse airport
to incorporate real-time data for dynamic
simulations. The study validates the model by
comparing it to real-world flight data, paving the
path for improved airport surface operating
simulations [8]. In another approach, dynamic
modeling of the aircraft handling process has been
developed to simulate the operational system of
aircraft. The ground-handling process activities
are performed and results are generated in the
form of graphs along with their dependencies. The
operational workflow has been modeled using
algorithms and the robustness of the system has
been analyzed to observe the intensity [9]. Robert
et al. [10], have proposed an approach to monitor
the flight performance of different electric vertical
take-off and landing aircraft (eVTOLs). This
approach is suitable for air taxi operations
however, their battery parameters are insufficient
due to limited battery mass and high energy
densities. The methodology describes power
modeling across flight phases, exposing vectored
thrust, lift and cruise, and multicopter eVTOL
ranges of 115 km, 70 km, and 50 km. While
informative, shortcomings include oversimplific-
ations in transition stages and a lack of
consideration for external influences, raising
concerns for real-world application and future
battery developments. Another work reported in
[11,12], presented a fully simulated air taxi
control process that is integrated as per designed
models to observe aircraft performance, routing,
crew scheduling, and maintenance management.
The findings highlighted key performance
metrics as well as sensitivity analyses.

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 27

3. PROPOSED FORMALISM FOR
 SMART FLIGHT MANAGEMENT
 SYSTEM
In this section, we present a state-of-the-art
formalism for a smart flight management system.
The design flow of the system utilizes automated
assistive reasoning processes when modeling the
system to formally specify the requirements and
verify the correctness flow of the system. The
system has a series of actions (steps) to compute
the requirement matrix, analyze the required set
of computational resources along with traditional
resources, evaluate the safety critical systems’
properties, delegate tracing and debugging plan,
perform verification and validation of specified
test plans, and configuration of a complete simula-
tion of the system. The system’s simulation
initiates with the acquisition of the computational
requirements considering resource utilization for
the distributed systems' concurrent processing.
Then the system analyzes the formal specifica-
tions using a formal specification tool to clarify
the system’s requirements and remove ambigu-
ities, inconsistencies, and incompleteness. As the
formal specifications act as base-level design for
the software development process, there is a need
to use the model-driven specification approach to
model the system and the property-oriented

specification specifies the system behavior in
terms of properties. Executable specification
specifies the system's architectural specification
and graphical depictions to formally model
temporal reasoning based on concurrent reason-
ing processes. Concurrent and temporalized
specifications explicitly define system behavior
in terms of states and the set of events with
guards. The verification process determines
whether the required set actions triggered at a

state fulfill the desired requirements that are
established during the modeling at the previous
phase whereas the validation process evaluates
the outcomes assessments to ensure compliance
with predetermined functional configurations. In
the system, we perform statistical model checking
[12], which is a simulation-based technique to
evaluate the quantitative as well as qualitative
properties. Using these properties, the system
evaluates whether the desired properties hold, and
satisfy in the prescribed format or not. In case of
a deadlock situation or conflicting information,
the system then triggers error traces for traversing
the extensive execution in state transition flow to
analyze the behavior in the specified states and a
counterexample might need to be executed to
traverse back to check whether the system
satisfies the desired properties at a specific time
interval and this process continues until the
desired goal is achieved or the system execution
process completes. The formal depiction of the
smart flight management system reasoning
process can be seen in Figure 1. To formally
specify the system, we use Z notation [13], for the
example scenario of the use cases of a smart flight
management system. Z specification language is
based on a set theory and developed by a program-
ming research group at Oxford University comp-

uting lab in the 1970s. Since then, it has gained
international standards for Z notation under the
ISO guidelines and is considered as the most
widely used formal specification language. It
conceptualizes the system in the form of mathe-
matical notation known as schema. Schema
structure allows a building block of static and
dynamic executions of the use cases and validates
the specification in terms of consistency and
completeness. Simplistically, system specification

Figure 1: Proposed Methodology for Multi-agent Flight Control System

are designed using schema which has a set of
entities and predicates to express the objects and
relationship among objects.

Figure 2: Z Specification of Boarding System

To illustrate the use case of a boarding system, it
is represented by a schema provided in Figure 2.
The schema named BoardingSystem is one of the
important use cases in the flight management
system. There are two segments in Figure 2. The
first segment shows that the system may acquire
the required information from two different
modules named as PassengerInfoSystem and
BoardingProcess. The operator attached to
PassengerInfoSystem is represented by the Greek
letter Xi which means PassengerInfoSystem is an
interlinked system with BoardingSystem howev-
er data extraction and verification can be
performed in the BoardingSystem module but
changes cannot be applied in the PassengerInfoS-
ystem. Similarly, the operator “Delta” is applied
to the BoardingProcess module which means that
as the passenger verification and boarding
process completes, the system updates in the
BoardingProcess module as well. In another way,
the BoardingProcess module is dynamic whereas
PassengerInfoSystem is static for the boarding
system module. This ensures the authentication
process as per user access privileges. The
architecture of the proposed system is divided
into four layers as shown in Figure 3. The first
layer is known as Layer 1, which is responsible
for managing communication flow to/from data
sources such as databases that may either be
centralized or distributed in nature. Wireless
sensor networks (WSN) and other resources
including sensors and other hardware compo-
nents. WSN actively collects real-time data from
various segments of the aircraft and then feeds
this data into the database for detailed process-
ing. Layer 2 is responsible for managing connec-
tivity among different processing units and
components using Wi-Fi modules and gateways
for exchanging information. The controller is a
central element of the control layer which precise

ly executes predefined policies and rules facilitat-
ing efficient data processing and decision-making.
The flight-control framework incorporates control-
lers, sensors, and multiple modules. The control-
ler acts as the central hub of the flight control
framework and is responsible for handling
to/from messages and control directions. In
addition, gateways serve as interfaces that enable
the control layer to be networked with the
infrastructure layer and ensure a harmonious
communication exchange. Layer 3 is the
operational layer which deals with the simulation
of core functionalities such as boarding,
departure, and landing management processes.
Information derived from layer 1 can be manipu-
lated to improve autonomous decision-making
capability within operational activities. In
addition, the information extracted from data
sources is interpreted specifically for the designat-
ed task however in such cases data privacy and
data preservation cannot be tolerated at all to
avoid inconsistency and incompleteness issues.
The fourth layer is called the simulation and
management layer, which combines the UPPAAL
simulator and verifier. The UPPAAL simulator
takes central responsibility for simulating and
verifying real-time scenarios of the proposed
system and ensures the responsiveness of the
system under various conditions.

4. FORMAL MODELLING OF SMART
 FLIGHT MANAGEMENT SYSTEM
We use UPPAAL [14,15] to formally specify the
system and verify the system’s correctness proper-
ties. UPPAAL has been considered to be the most
effective and optimistic model checker because it
combines symbolic techniques along with an
on-the-fly algorithm to reduce the complexity
when modeling the system’s behavior. UPPAAL
model checker can be used for timed automata
based on Computational Tree Logic (CTL). It
allows users to model the system, and analyze and
simulate the system behavior dynamically in a
real-time environment. It is based on timed autom-
ata, so it simulates system behaviors in terms of a
state transition model and is expressed by a clock
value as the system transits to the next state. To
illustrate the use of the proposed formalism, a
smart flight management case study has been
developed. The core aim is to provide smooth
flight management operations using autono-
mous decision support systems. The case
study has been modeled and simulated in the

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 28

UPPAAL simulator. UPPAAL provides a
userfriendly graphical user interface
including three different segments namely;
editor, simulator, and verifier. The basic
declaration and conditional statements are
written in the editor, process execution flow
in the form of simulation can be designed in
the simulator, and properties are defined in
the verifier to analyze the behavior of the
system’s correctness properties. UPPAAL
has a client-server architecture where its
model-checking engine acquires the desired
requirements according to prescribed
declarations and models the system’s
processes to analyze and simulate the
behavior in terms of the state transition
model. Using query language, the state
formula and path formulae determine
whether the desired property holds in the
specified model or not. For concurrent
processing, the system quantifies the paths to
ensure the reachability, safety, and liveness
properties. We model a smart flight
management case study using the UPPAAL
model checker. The proposed system has
been modelled along with its processes such
as the boarding management process along
with its local and global declarations in the
editor. The process configuration is
performed at the design time of the system
according to the process execution flows.
Each process in the system is initiated using
templates. According to the case study of the
proposed system, processes consist of six
modules that handle different aspects of
airport operations. For example, the landing
management module handles the process of
requesting and managing aircraft landing
operations such as communication to/from
the control tower. The emergency landing
module is responsible for handling
emergency landing requests due to different
hazardous situations. The departure module
is connected to the controller for the takeoff
and departure of the planes. In addition, this
module is responsible for managing
resource utilizations and billing issues as
well. Maintenance, security, and flight
boarding modules are connected with

corresponding modules to perform assigned
tasks. Figure 4 shows the landing management
module which has 4 possible actions such as
landing request, communication with the control
tower, checking runway availability, and landing
operation. Whenever a flight intends to land, the
system generates a request for landing operation
to the control tower. If the request is not
recognized then the system cancels the request
and the request is regenerated. If the air control
tower accepts the request but denies an immediate
response, then it will wait for the response until
the landing request is approved. After getting
acceptance from the control tower, then the
system checks the runway availability. If the
runway is not available, then it will go to turn
around time and keep tracking path. If the runway
is available then the system allows for landing
operation. After a successful landing operation,
the control tower updates the system.
The depiction of the departure module has been
simulated in Figure 5. As per the system’s
description, five different operations are deployed
in this module such as departure request, air traffic
control system, billing clearance and runway
availability. Whenever the aircraft is ready for
departure, a departure request is generated to the
air traffic control system. The request is evaluated
based on different aspects such as takeoff
clearance, runway availability, weather situation,
etc. If the request is approved, then the air traffic
control system sends clearance for the departure
operation, otherwise, the system is in a wait state
until the response is received from the control
system. As shown in Figure 6, the Boarding
module covers the set of actions such as security
checks, antinarcotics, customs, immigration and
boarding procedures, etc. The first step is a
security check whether the system checks the
passenger’s details in different steps. All other
modules are simulated similarly.

Figure 3: Layered Architecture of the proposed
system

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 29

5. FORMAL VERIFICATION OF
PROPOSED SYSTEM USING UPPAAL
MODEL CHECKER
We use the UPPAAL verifier to formally verify
the correctness properties of the system. Formal
verification properties are derived based on the

formal specification design of the proposed case
study. When modeling the system, verification
properties are specified to check whether the
desired properties are satisfied or not. We check
safety properties, liveness properties, reachability
states, guarantee of service, mutual exclusion,

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 30

Figure 4: Modelling and simulation of the landing module

Figure 5. Modelling and simulation of Departure Module

Figure 6. Modelling and simulation of boarding module

and robustness properties. Safety property
ensures that inconsistent execution must not
happen in the sense that the process of flight
management must be executed as per designed
guidelines. To specifically check the reachability,
we write property “A[]p” which means a formula
p remains true in all reachable states. In the case
of a few reachable states, we use an existential
quantifier, we apply a formula E<>p which states
that a formula p remains true in some states.
Upon successful execution of the UPPAAL
verifier, the system displays the message “proper-
ty is satisfied”. The system’s correctness proper-
ties along with their response time are illustrated
in Table 1 and their depiction is shown in Figure
7.
E<> ((A pos! =0 && C! =0 && A(parked)=
True) or ((A pos=0 && C=0 A && A(parked)=
false) and (A pos! =0 && C! = 0&& E=true &&
A(departure)=True) or (A pos! =0 && C! = 0&&
E=false && A(departure)=false) or (G=true &&
A1(maintained=True) and
(G! =true && A1(maintained=false) or ((p&&Q)
-->R =true && P(R)=True) and ((p&&Q) -->R!
=true && P(R)=false) or (i&&j&&k&&L=true
&& H (M)=True) and (i&&j&&k&&L! =true
&& H (M)=false))

Verification/kernel/elapsed time used:
0s/0s/0.003s. Resident/virtual memory usage
peaks:7204KB/26404KB. Property is satisfied.

A<> ((A pos! =0 && C! =0 && A(parked)=
True) or ((A pos=0 && C=0 A && A(parked)=
false)

In case of few reachable states, we use existential
quantifier, we apply a formula E<>p which states

Figure 7: Formal Verification Property
Satisfaction Graph

and (A pos! =0 && C! = 0&& E=true &&
A(departure)=True) or (A pos! =0 && C!= 0&&
E=false && A(departure)=false) or (G=true &&
A1(maintained=True) And (G! =true
&&A1(maintained=false) or ((p&&Q) -->R =true
&& P(R)=True) And ((p&&Q) -->R! =true &&
P(R)=false) or (i&&j&&k&&L=true && H
(M)=True) And (i&&j&&k&&L! =true && H
(M)=false))
Verification/kernel/elapsed time used:
0s/0s/0.006s
Resident/virtual memory usage peaks:
7001KB/26472KB.Property is satisfied.
A [] not deadlock
Verification/kernel/elapsed time used:
1.557s/0.060s/1.786s. Resident/virtual memory
usage peaks: 9,680KB/31,472KB. Property is
satisfied.

that a formula p remains true in some states. Table
1 explains The table provided outlines a Flight

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 31

Table 1: Verifying System’s correctness properties

Property

Deadlock

Safety

Reachability

Liveness

Tool and
Version

Verification
Time

Kernel Time Memory
Usage

Peak virtual
memory

Satisfied

UPPAAL version
4.1.19

UPPAAL version
4.1.19

UPPAAL version
4.1.19

UPPAAL version
4.1.19

1.786 seconds

0.006 seconds

0.003 Seconds

0.006 seconds

0.060 seconds

0 seconds

0 seconds

0 seconds

9,680KB

7001KBs

7204KB

7001KB

31,472KB

26472KB

26404KB

26472KB

yes

yes

yes

yes

Management System (FMS) with modules
designed for different functions within airport
operations. These modules are integrated into a
resource planning framework, utilizing a mutex
algorithm to optimize resource allocation and
ensure efficient coordination among various
tasks. Table 1 overarching framework for
resource allocation and coordination across all
modules. It ensures that resources are efficiently
distributed among the different modules based on
their needs and priorities.

6. CONCLUSION & FUTURE WORK
In this paper, we proposed a multi-agent reason-
ing-based smart flight management system that
provides real-time dynamic assistance for daily
routine activities. The core aim is to develop an
autonomous decision support system while
considering safety and liveness constraints. We
modeled the case study in the UPPAAL model
checker, simulated the system behavior, and
verified correctness properties. In future work,
we propose a state-of-the-art smart flight manage-
ment system using ambient intelligence that can
provide a predictive reasoning-based autono-
mous decision support mechanism.

REFERENCES
[1] Fremont et al., “Formal analysis and
redesign of a neural network-based aircraft
taxiing system with VerifAI,” In Computer Aided
Verification: 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, Proceedings, Part I 32, pp. 122-134,
Springer International Publishing, 2020.

[2] Y. Mualla et al., “Agent-based simula-
tion of unmanned aerial vehicles in civilian
applications: A systematic literature review and
research directions,” Future Generation Comput-
er Systems, 100, pp. 344-364.

[3] N. A. El-Araby et al., “Implementation
of formally verified real time distributed systems:
Simplified flight control system,” in The 2011
International Conference on Computer Engineer-
ing & Systems, pp. 25-32, 2011.

[4] G. Czibula et al., “IPA-An intelligent
personal assistant agent for task perfor- mance
support," 2009 IEEE 5th International Confer-
ence on Intelligent Computer Communication
and Processing. IEEE, pp. 31-34, 2009.

[5] T. Y. Leong and C. Cao, “Modelling
medical decisions in dynamol: A new general
framework of dynamic decision analysis,”
MEDINFO'98, IOS Press, pp. 483-487, 1998.

[6] M. I. Fakhir et al., “Formal Modeling and
Analysis of Air Traffic Control System Using
Petri Nets,” VAWKUM Transactions on Computer
Sciences, 11(2), pp. 35–48, 2023.

[7] J. Skorupski, “Airport traffic simulation
using petri nets,” In Activities of Transport
Telematics: 13th Inte rnational Conference on
Transport Systems Telematics, TST 2013,
Katowice-Ustroń, Poland, October 23–26, 2013,
Selected Papers 13, pp. 468-475, Springer Berlin
Heidelberg, 2013.

[8] Z. Su and M. Qiu, “Airport surface
modelling and simulation based on timed
coloured petri net,” Promet-Traffic&Transporta-
tion, 31(5), pp. 479-490, 2019.

[9] A. Kierzkowski and T. Kisiel, “A simula-
tion model of aircraft ground handling: case study
of the Wroclaw airport terminal,” In Information
Systems Architecture and Technology: Proceed-
ings of 37th International Conference on Informa-
tion Systems Architecture and Technology–ISAT
2016–Part III, pp. 109-125, Springer Internation-
al Publishing, 2017.

[10] R. Brühl et al., “Air taxi flight perfor-
mance modeling and application,” In Proceedings
of the USA/Europe ATM R&D Seminar, Online,
(September, 2021).

[11] P. A. Bonnefoy, “Simulating air taxi
networks,” In Proceedings of the Winter Simula-
tion Conference, pp. 10-pp, IEEE, (December,
2005).

[12] A. Legay et al., “Statistical Model Check-
ing.,” In Steffen, B., Woeginger, G. (eds) Comput-
ing and Software Science Lecture Notes in
Computer Science(), vol 10000, Springer, Cham,
2019.

[13] J. M. Spivey, Understanding Z: a specifi-
cation language and its formal semantics, Vol. 3,
Cambridge University Press, (1988).

[14] K. G. Larsen et al., “UPPAAL in a
nutshell,” International journal on software tools

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 32

for technology transfer, 1, pp. 134-152, 1997.

[15] J. Vain et al., :On the benefits of using
aspect-orientation in UPPAAL timed automata,”

In 2017 International Conference on Infocom
Technologies and Unmanned Systems (Trends and
Future Directions)(ICTUS), pp. 84-91, IEEE,
(December, 2017).

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT 33

