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ABSTRACT: 
  The emerging trends towards intelligent computing have drastically changed the human 
lifestyle in every facet of their lives. Due to the swift escalation of smart systems and emerging technolo-
gies, human life has become much more dependent and even more addicted to fulfilling their desire 
using smart and tiny resource-bounded gadgets. This revolution has evolved towards autonomous 
decision support systems. Autonomous decision support systems can acquire information autonomous-
ly, reason the information, and adapt behavior accordingly. As these systems are deployed in a highly 
decentralized environment and exhibit complex adaptive behavior, however, the inconsistent nature of 
information may raise different challenging issues. This paper presents a multi-agent environmental-
ly-aware framework for modeling and reasoning flight management systems. This system has a sound 
reasoning mechanism to execute and monitor flight control activities while considering liveness and 
safety-critical constraints. We use the UPPAAL model checker to formally analyze the system’s behav-
ior and verify its correctness properties.

KEYWORDS: Autonomous Reasoning, Multi-agent, Model Checking, UPPAAL

LGU Research Journal of Computer Science & Information Technology, Vol (8): Issue (1), LGURJCSIT           25

1. INTRODUCTION
Recent years have witnessed the significant 
contributions of Unmanned aerial vehicles 
(UAVs) with great interest in industrial usage and 
wide utilization carrying small objects in remote 
areas where the surrounding environment is not 
well supported for human beings. UAVs have 
been anticipated as manned aircraft equipped 
with smart sensors, communication equipment, 
cameras, and intelligent decision-making 
capability to take the right action at the right time 
and in the right place. However, these systems are 
highly sensitive in nature and may cause the loss 
of huge investment in case of failure. The 
research community has introduced formal model 
checking and verification techniques to test the 
system well before its actual launch. Model 
checking has been widely used by the industry 
and scientific community in different domains 

such as healthcare, safety-critical systems, and 
aviation systems, for formal modeling and 
verification to determine whether the system 
meets the desired specifications or not. The 
ultimate purpose is to verify the correctness 
behaviors in terms of hardware, software, and a 
joint venture of interactive cross-platform devices 
and systems. Literature has revealed a significant 
number of formal modeling techniques deployed 
in a variety of systems including avionics, 
healthcare, defense systems, etc. In [1], Fremont 
et.al. have proposed a rigorous design model of 
autonomous safety-critical systems. For formal 
analysis, the VERIFAI toolkit has been used for 
modeling, falsification, debugging, and overall 
evaluation process. A case study of aircraft 
taxiing systems has been modeled and 
probabilistic reasoning-based systems are 
deployed to track the runway centerline traffic  
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flow system. Authors in [2], have discussed UAV 
simulations in multi-agent systems along with 
their challenging issues including autonomy, 
security, validation, and verification of the 
systems. In another work [3], the design flow of a 
flight control system has been presented using 
distributed devices connected using a digital 
communication channel. The system was verified 
by the B model to specify the logic model of the 
system and verify its properties. In this work, we 
propose an autonomous flight control system that 
can perform different flight control missions and 
verify the correct behavior of the system. For 
formal analysis, model checking and formal 
verification, the case study has been simulated 
using UPPAAL model checker with the 
accentuation on properties like safety, liveness, 
robustness, and deadlock. The proposed flight 
control system is better than the conventional 
systems in the sense that we incorporate formal 
verification properties to ensure safety, liveness, 
robust properties, and deadlock resistance. To 
realize this goal, we utilize the power of formal 
analysis tools, i.e. UPPAAL model checkers, that 
include model checkers and formal verifications. 
The rest of the paper is structured as follows: 
Section II presents the related work considering 
smart flight management systems. In Section III, 
we present a formalism for a smart flight 
management system along with its architectural 
specifications. In Section IV, we model the case 
study in UPPAAL model checker and Section V 
specifies the system behavior and verifies its 
correctness properties. We finally conclude in 
Section VI.

2. RELATED WORK
Literature has revealed a significant number of 
intelligent systems along with autonomous 
reasoning techniques. Autonomous 
reasoning-based intelligent assistive systems 
facilitate systems and users to achieve their goals 
[4-6]. In [6], authors have presented a formal 
ATC system model for regulating aircraft flow on 
two runways using Hierarchical Timed Color 
Petri Nets, demonstrating feasibility and 
correctness. While focusing on FCFS scheduling, 
studies investigate advanced techniques, 
real-time data integration, and collaborative 
decision-making to improve efficiency and 
scalability in different runway operations under 
varying traffic situations [6]. Skorupski in [7], 
has proposed the conceptual airport traffic 
operational model using timed, colored, and 

stochastic Petri nets with an emphasis on airside 
capacity, operational delay, and safety issues. The 
simulation tests shed light on the impact of initial 
landing formations as well as prospective 
improvements to the takeoff and landing 
procedures. The proposed system has been 
elaborated with the example of the airport with 
one runway and multiple takeoffs and landing 
operations. The CPN tool has been used to 
simulate the experiment taking-off and landing 
operations simultaneously. Su et al. have 
proposed a Coloured Petri Net to model and 
simulate the aircraft's operational activities such 
as directing aircraft movement on the ground 
surface and parking along with constraints 
considering taxiing estimation system. It creates 
static and dynamic Petri net models, which 
incorporate taxiing velocity constraints and 
simulate conflict-free taxiing. They have modeled 
and simulated the experiment at Toulouse airport 
to incorporate real-time data for dynamic 
simulations. The study validates the model by 
comparing it to real-world flight data, paving the 
path for improved airport surface operating 
simulations [8]. In another approach, dynamic 
modeling of the aircraft handling process has been 
developed to simulate the operational system of 
aircraft. The ground-handling process activities 
are performed and results are generated in the 
form of graphs along with their dependencies. The 
operational workflow has been modeled using 
algorithms and the robustness of the system has 
been analyzed to observe the intensity [9]. Robert 
et al. [10], have proposed an approach to monitor 
the flight performance of different electric vertical 
take-off and landing aircraft (eVTOLs). This 
approach is suitable for air taxi operations 
however, their battery parameters are insufficient 
due to limited battery mass and high energy 
densities. The methodology describes power 
modeling across flight phases, exposing vectored 
thrust, lift and cruise, and multicopter eVTOL 
ranges of 115 km, 70 km, and 50 km. While 
informative, shortcomings include oversimplific- 
ations in transition stages and a lack of 
consideration for external influences, raising 
concerns for real-world application and future 
battery developments. Another work reported in 
[11,12], presented a fully simulated air taxi 
control process that is integrated as per designed 
models to observe aircraft performance, routing, 
crew scheduling, and maintenance management. 
The findings highlighted key performance 
metrics as well as sensitivity analyses.  
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3.   PROPOSED FORMALISM FOR   
  SMART FLIGHT MANAGEMENT     
  SYSTEM
In this section, we present a state-of-the-art 
formalism for a smart flight management system. 
The design flow of the system utilizes automated 
assistive reasoning processes when modeling the 
system to formally specify the requirements and 
verify the correctness flow of the system. The 
system has a series of actions (steps) to compute 
the requirement matrix, analyze the required set 
of computational resources along with traditional 
resources, evaluate the safety critical systems’ 
properties, delegate tracing and debugging plan, 
perform verification and validation of specified 
test plans, and configuration of a complete simula-
tion of the system. The system’s simulation 
initiates with the acquisition of the computational 
requirements considering resource utilization for 
the distributed systems' concurrent processing. 
Then the system analyzes the formal specifica-
tions using a formal specification tool to clarify 
the system’s requirements and remove ambigu-
ities, inconsistencies, and incompleteness. As the 
formal specifications act as base-level design for 
the software development process, there is a need 
to use the model-driven specification approach to 
model the system and the property-oriented 

specification specifies the system behavior in 
terms of properties. Executable specification 
specifies the system's architectural specification 
and graphical depictions to formally model 
temporal reasoning based on concurrent reason-
ing processes. Concurrent and temporalized 
specifications explicitly define system behavior 
in terms of states and the set of events with 
guards. The verification process determines 
whether the required set actions triggered at a 

state fulfill the desired requirements that are 
established during the modeling at the previous 
phase whereas the validation process evaluates 
the outcomes assessments to ensure compliance 
with predetermined functional configurations. In 
the system, we perform statistical model checking 
[12], which is a simulation-based technique to 
evaluate the quantitative as well as qualitative 
properties. Using these properties, the system 
evaluates whether the desired properties hold, and 
satisfy in the prescribed format or not.  In case of 
a deadlock situation or conflicting information, 
the system then triggers error traces for traversing 
the extensive execution in state transition flow to 
analyze the behavior in the specified states and a 
counterexample might need to be executed to 
traverse back to check whether the system 
satisfies the desired properties at a specific time 
interval and this process continues until the 
desired goal is achieved or the system execution 
process completes. The formal depiction of the 
smart flight management system reasoning 
process can be seen in Figure 1. To formally 
specify the system, we use Z notation [13], for the 
example scenario of the use cases of a smart flight 
management system. Z specification language is 
based on a set theory and developed by a program-
ming research group at Oxford University comp-

uting lab in the 1970s. Since then, it has gained 
international standards for Z notation under the 
ISO guidelines and is considered as the most 
widely used formal specification language. It 
conceptualizes the system in the form of mathe-
matical notation known as schema. Schema 
structure allows a building block of static and 
dynamic executions of the use cases and validates 
the specification in terms of consistency and 
completeness. Simplistically, system specification

Figure 1: Proposed Methodology for Multi-agent Flight Control System



are designed using schema which has a set of 
entities and predicates to express the objects and 
relationship among objects. 

Figure 2: Z Specification of Boarding System

To illustrate the use case of a boarding system, it 
is represented by a schema provided in Figure 2. 
The schema named BoardingSystem is one of the 
important use cases in the flight management 
system. There are two segments in Figure 2. The 
first segment shows that the system may acquire 
the required information from two different 
modules named as PassengerInfoSystem and 
BoardingProcess. The operator attached to 
PassengerInfoSystem is represented by the Greek 
letter Xi which means PassengerInfoSystem is an 
interlinked system with BoardingSystem howev-
er data extraction and verification can be 
performed in the BoardingSystem module but 
changes cannot be applied in the PassengerInfoS-
ystem. Similarly, the operator “Delta” is applied 
to the BoardingProcess module which means that 
as the passenger verification and boarding 
process completes, the system updates in the 
BoardingProcess module as well. In another way, 
the BoardingProcess module is dynamic whereas 
PassengerInfoSystem is static for the boarding 
system module. This ensures the authentication 
process as per user access privileges. The 
architecture of the proposed system is divided 
into four layers as shown in Figure 3.  The first 
layer is known as Layer 1, which is responsible 
for managing communication flow to/from data 
sources such as databases that may either be 
centralized or distributed in nature. Wireless 
sensor networks (WSN) and other resources 
including sensors and other hardware compo-
nents. WSN actively collects real-time data from 
various segments of the aircraft and then feeds 
this data into the database for detailed process-
ing. Layer 2 is responsible for managing connec-
tivity among different processing units and 
components using Wi-Fi modules and gateways 
for exchanging information. The controller is a 
central element of the control layer which precise

ly executes predefined policies and rules facilitat-
ing efficient data processing and decision-making. 
The flight-control framework incorporates control-
lers, sensors, and multiple modules. The control-
ler acts as the central hub of the flight control 
framework and is responsible for handling 
to/from messages and control directions. In 
addition, gateways serve as interfaces that enable 
the control layer to be networked with the 
infrastructure layer and ensure a harmonious 
communication exchange. Layer 3 is the 
operational layer which deals with the simulation 
of core functionalities such as boarding, 
departure, and landing management processes. 
Information derived from layer 1 can be manipu-
lated to improve autonomous decision-making 
capability within operational activities. In 
addition, the information extracted from data 
sources is interpreted specifically for the designat-
ed task however in such cases data privacy and 
data preservation cannot be tolerated at all to 
avoid inconsistency and incompleteness issues.  
The fourth layer is called the simulation and 
management layer, which combines the UPPAAL 
simulator and verifier. The UPPAAL simulator 
takes central responsibility for simulating and 
verifying real-time scenarios of the proposed 
system and ensures the responsiveness of the 
system under various conditions. 

4.   FORMAL MODELLING OF SMART  
      FLIGHT MANAGEMENT SYSTEM
We use UPPAAL [14,15] to formally specify the 
system and verify the system’s correctness proper-
ties. UPPAAL has been considered to be the most 
effective and optimistic model checker because it 
combines symbolic techniques along with an 
on-the-fly algorithm to reduce the complexity 
when modeling the system’s behavior. UPPAAL 
model checker can be used for timed automata 
based on Computational Tree Logic (CTL). It 
allows users to model the system, and analyze and 
simulate the system behavior dynamically in a 
real-time environment. It is based on timed autom-
ata, so it simulates system behaviors in terms of a 
state transition model and is expressed by a clock 
value as the system transits to the next state. To 
illustrate the use of the proposed formalism, a 
smart flight management case study has been 
developed. The core aim is to provide smooth 
flight management operations using autono-
mous decision support systems. The case 
study has been modeled and simulated in the 
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UPPAAL simulator. UPPAAL provides a 
userfriendly graphical user interface 
including three different segments namely; 
editor, simulator, and verifier. The basic 
declaration and conditional statements are 
written in the editor, process execution flow 
in the form of simulation can be designed in 
the simulator, and properties are defined in 
the verifier to analyze the behavior of the 
system’s correctness properties. UPPAAL 
has a client-server architecture where its 
model-checking engine acquires the desired 
requirements according to prescribed 
declarations and models the system’s 
processes to analyze and simulate the 
behavior in terms of the state transition 
model. Using query language, the state 
formula and path formulae determine 
whether the desired property holds in the 
specified model or not. For concurrent 
processing, the system quantifies the paths to 
ensure the reachability, safety, and liveness 
properties. We model a smart flight 
management case study using the UPPAAL 
model checker. The proposed system has 
been modelled along with its processes such 
as the boarding management process along 
with its local and global declarations in the 
editor. The process configuration is 
performed at the design time of the system 
according to the process execution flows. 
Each process in the system is initiated using 
templates. According to the case study of the 
proposed system, processes consist of six 
modules that handle different aspects of 
airport operations. For example, the landing 
management module handles the process of 
requesting and managing aircraft landing 
operations such as communication to/from 
the control tower. The emergency landing 
module is responsible for handling 
emergency landing requests due to different 
hazardous situations. The departure module 
is connected to the controller for the takeoff 
and departure of the planes. In addition, this 
module is responsible for managing 
resource utilizations and billing issues as 
well. Maintenance, security, and flight 
boarding modules are connected with 

corresponding modules to perform assigned 
tasks. Figure 4 shows the landing management 
module which has 4 possible actions such as 
landing request, communication with the control 
tower, checking runway availability, and landing 
operation. Whenever a flight intends to land, the 
system generates a request for landing operation 
to the control tower. If the request is not 
recognized then the system cancels the request 
and the request is regenerated. If the air control 
tower accepts the request but denies an immediate 
response, then it will wait for the response until 
the landing request is approved. After getting 
acceptance from the control tower, then the 
system checks the runway availability. If the 
runway is not available, then it will go to turn 
around time and keep tracking path. If the runway 
is available then the system allows for landing 
operation. After a successful landing operation, 
the control tower updates the system. 
The depiction of the departure module has been 
simulated in Figure 5. As per the system’s 
description, five different operations are deployed 
in this module such as departure request, air traffic 
control system, billing clearance and runway 
availability. Whenever the aircraft is ready for 
departure, a departure request is generated to the 
air traffic control system. The request is evaluated 
based on different aspects such as takeoff 
clearance, runway availability, weather situation, 
etc. If the request is approved, then the air traffic 
control system sends clearance for the departure 
operation, otherwise, the system is in a wait state 
until the response is received from the control 
system. As shown in Figure 6, the Boarding 
module covers the set of actions such as security 
checks, antinarcotics, customs, immigration and 
boarding procedures, etc. The first step is a 
security check whether the system checks the 
passenger’s details in different steps. All other 
modules are simulated similarly. 

Figure 3: Layered Architecture of the proposed 
system
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5.  FORMAL VERIFICATION OF 
PROPOSED SYSTEM USING UPPAAL 
MODEL CHECKER
We use the UPPAAL verifier to formally verify 
the correctness properties of the system. Formal  
verification properties are derived based on the 

formal specification design of the proposed case 
study. When modeling the system, verification 
properties are specified to check whether the 
desired properties are satisfied or not. We check 
safety properties, liveness properties, reachability 
states, guarantee of service, mutual exclusion, 
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Figure 4: Modelling and simulation of the landing module

Figure 5. Modelling and simulation of Departure Module

Figure 6. Modelling and simulation of boarding module



and robustness properties. Safety property 
ensures that inconsistent execution must not 
happen in the sense that the process of flight 
management must be executed as per designed 
guidelines. To specifically check the reachability, 
we write property “A[]p” which means a formula 
p remains true in all reachable states. In the case 
of a few reachable states, we use an existential 
quantifier, we apply a formula E<>p which states 
that a formula p remains true in some states. 
Upon successful execution of the UPPAAL 
verifier, the system displays the message “proper-
ty is satisfied”.  The system’s correctness proper-
ties along with their response time are illustrated 
in Table 1 and their depiction is shown in Figure 
7.
E<> ((A pos! =0 && C! =0 && A(parked)= 
True) or ((A pos=0 && C=0 A && A(parked)= 
false) and (A pos! =0 && C! = 0&& E=true && 
A(departure)=True) or (A pos! =0 && C! = 0&& 
E=false && A(departure)=false) or (G=true && 
A1(maintained=True) and 
(G! =true && A1(maintained=false) or ((p&&Q) 
-->R =true && P(R)=True) and ((p&&Q) -->R! 
=true && P(R)=false) or (i&&j&&k&&L=true 
&& H (M)=True) and (i&&j&&k&&L! =true 
&& H (M)=false)) 

Verification/kernel/elapsed time used: 
0s/0s/0.003s. Resident/virtual memory usage 
peaks:7204KB/26404KB. Property is satisfied.

A<> ((A pos! =0 && C! =0 && A(parked)= 
True) or ((A pos=0 && C=0 A && A(parked)= 
false)

In case of few reachable states, we use existential 
quantifier, we apply a formula E<>p which states 

Figure 7: Formal Verification Property 
Satisfaction Graph

and (A pos! =0 && C! = 0&& E=true && 
A(departure)=True) or (A pos! =0 && C!= 0&& 
E=false && A(departure)=false) or (G=true && 
A1(maintained=True) And (G! =true 
&&A1(maintained=false) or ((p&&Q) -->R =true 
&& P(R)=True) And ((p&&Q) -->R! =true && 
P(R)=false) or (i&&j&&k&&L=true && H 
(M)=True) And (i&&j&&k&&L! =true && H 
(M)=false))
Verification/kernel/elapsed time used: 
0s/0s/0.006s
Resident/virtual memory usage peaks: 
7001KB/26472KB.Property is satisfied.
A [] not deadlock
Verification/kernel/elapsed time used: 
1.557s/0.060s/1.786s. Resident/virtual memory 
usage peaks: 9,680KB/31,472KB. Property is 
satisfied.

that a formula p remains true in some states. Table 
1 explains The table provided outlines a Flight 
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Table 1: Verifying System’s correctness properties

Property 

Deadlock

Safety 

Reachability

Liveness 

Tool and 
Version 

Verification 
Time

Kernel Time Memory 
Usage

Peak virtual 
memory 

Satisfied 

UPPAAL version 
4.1.19

UPPAAL version 
4.1.19

UPPAAL version 
4.1.19

UPPAAL version 
4.1.19

1.786 seconds

0.006 seconds

0.003 Seconds 

0.006 seconds

0.060 seconds

0 seconds

0 seconds 

0 seconds

9,680KB 

7001KBs

7204KB 

7001KB

31,472KB

26472KB

26404KB

26472KB

yes

yes

yes

yes



Management System (FMS) with modules 
designed for different functions within airport 
operations. These modules are integrated into a 
resource planning framework, utilizing a mutex 
algorithm to optimize resource allocation and 
ensure efficient coordination among various 
tasks. Table 1 overarching framework for 
resource allocation and coordination across all 
modules. It ensures that resources are efficiently 
distributed among the different modules based on 
their needs and priorities.

6.     CONCLUSION & FUTURE WORK
In this paper, we proposed a multi-agent reason-
ing-based smart flight management system that 
provides real-time dynamic assistance for daily 
routine activities. The core aim is to develop an 
autonomous decision support system while 
considering safety and liveness constraints. We 
modeled the case study in the UPPAAL model 
checker, simulated the system behavior, and 
verified correctness properties. In future work, 
we propose a state-of-the-art smart flight manage-
ment system using ambient intelligence that can 
provide a predictive reasoning-based autono-
mous decision support mechanism. 
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