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ABSTRACT: 
 The Internet of Things, with its promise of ubiquitous connectivity, leads to the connectivity 
of billions of devices continuously generating a sheer volume of data processed by Cloud-centric 
Internet of Things (CIoT) based architecture. Cloud data centers reside multi-hop away from the end 
user, resulting in certain limitations like long latency, bandwidth, and scalability. Fog computing 
addresses these challenges by extending cloud-computing capabilities to the edge of the network, thus 
alleviating these concerns. However, the efficient execution of diverse nature fog applications on these 
distributed, heterogeneous, and resource-constrained fog devices needs efficient resource manage-
ment techniques. Among these techniques, distributed task offloading is the one that efficiently moves 
the tasks from resource-limited fog devices to multiple resource-rich devices. An efficient distributed 
task-offloading algorithm is imperative to minimize latency and cost, optimize resource utilization, 
conserve bandwidth, and improve the quality of service. In this paper, we propose a multi-objective 
optimization-based distributed task-offloading algorithm based on NSGA-II, which reduces latency, 
network utilization, cost, and energy consumption. We evaluate the proposed offloading algorithm 
using iFogSim in comparison with PSO and FCFS approaches. The results show that the delay, cost 
and network usage of the proposed algorithm is much better as compared to baseline algorithms. 
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1. INTRODUCTION
IoT is an environment that consists of a large no 
of heterogeneous interrelated devices over the 
internet for connecting and sharing data with 
other devices without human interference [1]. 
With the advancement of communication 
technology, the number of IoT and connected 
devices has increased, which produces an 
enormous amount of data. Initially, Cloud-centric 
Internet of Things (CIoT) based architecture is 
used, but it is difficult for the CIoT alone to 
handle this vast amount of data [2]. Furthermore, 
Cloud data centers are multiple hops away from 
the source of data origin. Transmitting data to the 
cloud will consume increased bandwidth and 
elevate latency and cost that's why cloud 
computing is not an ideal choice for real-time 
applications.

1.1. Fog Computing
To overcome these problems the concept of fog 
computing was introduced by Cisco, which 
extends cloud computing by moving the 
computing, processing, storage, and networking 
facilities to the edge of the network. Fog 
computing is a distributed computing 
infrastructure that provides low latency, efficient 
resource management, and real-time processing 
near the edge of the network [3]. The hierarchical, 
bi-directional and distributed architecture of fog 
computing is shown in Figure 1.

A. Edge Tier 
The devices in the Edge tier act as the entry points 
to the fog computing net-work such as IoT 
sensors, smartphones, cam-eras, and embedded 
systems. These devices gather data and perform 
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initial data pro-cessing near the data source. 

Figure 1: Fog Computing Architecture

B. Fog Tier
Fog tier consists of intermediary computing 
devices situated closer to the edge devices than 
traditional cloud data centers like micro data 
centers, routers, and switches. These nodes 
collect data from the edge tier, process it, and 
perform necessary computa-tions for intelligent 
decisions. 

C. Cloud Tier 
The topmost tier of the architec-ture, known as 
the cloud, is made up of a number of 
high-capacity data centers for long-term 
decision-making.
Fog computing has different characteris-tics such 
as heterogeneity, resource and ener-gy limitation, 
context awareness, and mobili-ty. The 
ever-increasing number of IoT appli-cations and 
devices generate an enormous amount of data 
that needs processing on these fog devices.
However, the dynamic nature, heteroge-neity, 
and resource-constrained fog devices make 
resource management a critical issue in fog 
computing. Therefore, efficient pro-cessing of 
the data generated by heterogene-ous IoT 
applications with different QoS re-quirements 
needs efficient exploration and use of available 
fog nodes via task offloading. 

1.2. Distributed Task Offloading in Fog
Task offloading is a procedure of moving 
computing some tasks or workloads from 
resource-limited to resource-rich devices. In task 
offloading, the tasks are sent to a single node, 
while in distributed task offloading tasks are 
dynamically distributed across multiple fog 
nodes. Distributed task offloading deals with the 
intelligent allocation of tasks to the most suitable 
and available computing resources within the fog 
network based on various factors, including the 

computational requirements of the task, the 
proximity of resources, current resource 
utilization, and network conditions [4,5]. This 
ensures efficient resource utilization, minimizes 
latency, and enhances the scalability and fault 
tolerance of fog computing systems. Task 
offloading in fog computing is still in its early 
stages despite the existence of prior proposals for 
various task-offloading techniques. To identify 
their shortcomings in supporting the optimization 
of latency, network utilization, and energy 
consumption, we have conducted a brief literature 
analysis on the relevant literature about the 
various task offloading methodologies currently 
used in fog computing. It is discovered that the 
task offloading techniques now in use either 
complete mono-or bijective jobs or offload duties 
to a single node. Most task-offloading techniques 
pay attention to latency problems and overlook 
other factors. Therefore, it is necessary to develop 
a multi-objective optimization-based distributed 
task offloading strategy to distribute work among 
several fog nodes while optimizing performance 
and resource usage. For the implementation of 
NSGAII, PSO, and FCFS for distributed task 
offloading, we used iFogsim.This research paper 
is concerned with the de-sign, implementation, 
and evaluation of a multi-objective 
optimization-based distribut-ed task offloading 
algorithm that efficiently offloads tasks on fog 
nodes according to the requirements. The 
following are the main contributions of the 
suggested work.
i. We investigate metrics optimized and 
limitations of the existing task offloading 
algorithms.
ii. We design and implement an 
NSGA-II-based multi-objective optimization 
algo-rithm for distributed task offloading in a 
fog-cloud computing environment using 
iFogSim.
iii. We determine the effectiveness of our 
proposed algorithm in terms of latency, energy 
consumption, cost, and network usage and 
compare the results with the FCFS and Particle 
Swarm Optimization (PSO) algorithm.
The remainder of the article is structured as 
follows. In Section II, we present detailed the 
literature review that is closely related to our 
work. A summary and research solution for 
distributed task offloading based on 
multi-objective optimization in fog computing are 
presented in Section III. The evaluation process 
and simulation model utilized in this paper are 
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described in Section IV. The implementation of 
NSGAII and PSO for distributed task offloading 
is presented, and the outcomes of these 
algorithms are contrasted with FCFS. In Section 
V, we explain the research's outcomes and 
provide recommendations for further study.

2. RELATED WORK
In this section we have reviewed centralized, 
distributed, dynamic, hierarchical, heuristic, GA, 
and reinforcement learning-based algorithms that 
have been proposed for optimization of task 
offloading for the different metrics such as: 
Performance Metrics, Resource Usage, Financial 
Costs, and Energy usage. Load balancing was 
employed by Fricker et al. [6] to start offloading 
the jobs inside the fog datacenters. The authors 
outlined a situation in which a request arrives at a 
datacenter that is overburdened and is routed to a 
datacenter next door that has an equal chance of 
getting the request. According to their method, 
more requests are declined or banned depending 
on whether they can offload duties once a 
datacenter is overcrowded. The authors 
essentially offloaded work based on request 
blockage rate. Energy usage was emphasized by 
Zhang et al. [7]. They provided a mechanism for 
offloading computing in 5G networks that is 
energy-efficient. Their suggested offloading 
mechanism accounts for both the energy used 
during task execution and the energy used during 
transmission or transferring of the job. In order to 
reduce the total power use of the offloading 
process, the offloading system improves both the 
job offloading and radio resource allocation in 5G 
networks. Yousefpour et al. [8] delay-minimizing 
offloading strategy for fog nodes takes into 
account different request types with varying 
processing durations in addition to the queue's 
length. Following this, it decides whether or not 
to offload the chosen tasks to its best neighbor fog 
node if the projected waiting time of the fog node 
is more than an acceptable threshold.
Without using any categories, Aazam et al. [9] 
described the typical techniques utilized for work 
offloading and evaluation of previously 
published publications. The comprehensive 
literature review based on the choice of fog nodes 
throughout task offloading in VFC was reported 
by Hamdi et al. [10]. They concluded their work 
by discussing the problems and restrictions of 
their research. For single type offloading, Xu et 
al. Apply reinforcement learning techniques to 
lower overall cost in delay-sensitive applica-

tions [11]. A deep neural network (DNN) model 
that uses reinforcement learning to offload 
challenging tasks. Wang and fellows present a 
novel approach for task offloading for the edge 
that combines deep sequential models and 
reinforcement learning to optimize resource 
consumption in [12].
In order to solve minimize delay problem for task 
offloading in hierarchical fog computing network 
Pan et al., formulate the task offloading problem 
as linear integer problem [13]. Liu and fellows 
[14] delve into critical aspects of task offloading 
to meet the demands of ultra-reliable low latency 
application using extreme value theory. The prima-
ry goal of the study is to minimize the user’s 
power consumption along with efficient resource 
allocation. By utilizing matching theory, Tran et 
al., investigated several offloading strategies for 
resource management [15]. In the NSGA-III 
algorithm, which is based on GA-based offload-
ing, A queueing theory based task-offloading 
algorithm is suggested to minimize execution 
delay and optimize energy consumption in [16]. 
Nan and fellows propose an online algorithm 
based on Lyapunov optimization technique to 
balance the tradeoff between average response 
time, cost and number of application loss [17]. Xu 
et al., presented a multi-objective based computa-
tion offloading method (MOC) that has better 
latency and cost, but more work needs to be done 
to efficiently distribute resources for the Internet 
of Vehicles (IOV), such as delay management and 
energy consumption [18]. The authors claimed 
that their algorithm is not only cost effective but 
also minimize response time and average no of 
applications. Adhikri and fellows propose an 
innovative task offloading approach that 
combines deadline and priority requirements of 
tasks using multi-level feedback queues [19]. The 
algorithm offers minimal latency along prioritiaed 
execution. Chang et al., use game theory to 
optimize task offloading in multi-server edge 
computing in overlapping service areas of mobile 
users [20]. They apply non-cooperative game 
method using real-time update computation 
offloading (RUCO) algorithm that uses Nash 
equilibrium, and a multi-user probabilistic offload-
ing decision algorithm to address this problem. A 
backpressure algorithm based task-offloading 
algorithm to minimize delay of latency-sensitive 
tasks in smart homes is presented in [21]. This 
algorithm minimize the queue length of tasks by 
minimizing Lyapunov drift optimization 
algorithm in each slot to improve the stability of 



the queue and offloading performance. In 2021, 
Vu and fellows present a joint task offloading and 
resource allocation algorithm for multi-layer 
cooperative fog network that exploits energy 
efficient techniques ensuring to meet delay 
constraints and network performance 
optimization [22]. Hou and fellows propose a 
hierarchical task offloading technique for 
latency-sensitive and delay-tolerant applications 
that integrate artificial intelligence and edge 
computing to ensure the quality of service, 
minimized latency and service that is more 
reliable in [23]. In 2022, Malik and fellows 
present a matching based parallel offloading 
technique for optimizing resource utilization and 
minimizing latency in IoT networks [24]. The 

Table 1: Comparison of Existing Task 
Offloading Algorithms

authors generated preference profiles for different 
IoT nodes, for task-offloading decision due to 
which latency is reduced up to 52% for heavy task 
load.Kishor et al. takes inspiration from nature to 
optimize task distribution in fog computing 
environments [25]. This study leverage smart Ant 
Colony Optimization (ACO) to increase the 
efficiency of resource allocation along with 
minimization of latency. Shi and fellows present a 
task-offloading algorithm based on deep 
deterministic policy gradient (DDPG) algorithm 
for vehicular fog computing environment [26]. 
The authors compared the results of proposed 
algorithm with deep Q-learning and actor-critic 
algorithm and claimed to get better results in 
terms of reducing cost. Tran-Dang et al. present a 
dynamic and collaborative approach for task 
offloading to process the data efficiently [27]. This 
study leverage the performance of fog computing 
by real-time collaboration between fog nodes to 
reduce average delay with high rate of service 
requests.  Table 1, presents the comparison of the 
proposed task offloading techniques in terms of 
optimization metrics, and simulator used.
Literature review and analysis show that existing 
task offloading approaches are either mono or 
bijective or offload tasks to one node. Most 
current algorithms focus on latency issues while 
ignoring other parameters during task offloading. 
Therefore, there is a need to design an efficient 
multi-objective optimization-based distributed 
task offloading algorithm that offloads tasks to 
multiple fog nodes along with efficient utilization 
of resources and performance optimization.

3. DESIGN AND IMPLEMENTATION
Tome of the tasks to the cloud or fog because we 
need an additional entity that executes the task 
and returns the result immediately after execution 
to support a real-time application and to increase 
efficiency. Effective task offloading strategies are 
necessary to effectively optimize resources, 
accelerate response times, and boost the 
effectiveness of complicated systems. In order to 
distribute tasks to various fog nodes while 
maximizing resource utilization, minimizing 
latency, minimizing cost, energy consumption, 
and network usage., we will develop an effective 
multi-objective optimization-based distributed 
task offloading approach.

3.1. Application types in Fog Computing
Fog computing brings processing, storage, and 
networking resources closer to where data is 
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1

4
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Latency
Service delay

_

_

_

8

2 DRL Latency 12

3
Majorization-
minimization Latency Monti-Carlo 13

Extreme 
value theory

Delay
Power 

con-sumption
14

6 CloudsimNSGA-III
Energy 

con-sumption, 
delay

18

7 _Priority-
based 

Waiting time, 
throughput, 

deadline
19

8 _Non-cooperative 
game method 

cost 20

9 _Lyapunov 
optimization

delay 21

10 _Branch and 
Bound, FFBD

Energy con-
sumption, 

delay
22

11 _Multi-agent DRL delay 23

12 _

_

Matching-based delay 24

13 MATLABMeta-Heuristic Latency, QoS 25

14 PythonDDPG cost 26

15 DCTO

Reduce 
delay, 
high 

service rate

27

5 _Lyapunov 
optimization 17

Response 
time, cost,

no of 
applica-tion 

loss



created and consumed by extending the ideas of 
cloud computing to the edge of the network. This 
enables diverse applications to handle data more 
quickly, with less latency, and with more 
effectiveness. Here are a few examples of 
application types that gain from fog computing:

A. IoT (Internet of Things) Devices
Fog computing is especially helpful for IoT 
devices that produce an enormous amount of 
data. You may decrease the amount of data that 
has to be transferred to the cloud, cutting latency 
and preserving bandwidth, by processing data 
locally on edge devices or in close-by fog nodes.

B. Smart Cities
Fog computing can be used for a number of smart 
city applications, including traffic, waste, and 
environmental monitoring. Local processing may 
make it possible to react to situations and 
occurrences more quickly.

C. Healthcare
In the field of healthcare, fog computing may be 
used for wearable health equipment, remote 
patient monitoring, and even real-time picture 
processing. This enables doctors to diagnose and 
decide more quickly.

D. Transportation 
Intelligent transportation systems may greatly 
benefit from the use of fog computing. It can help 
with low-latency applications including real-time 
traffic monitoring, autonomous driving, and 
vehicle-to-vehicle communication.

3.2. Case study
Real-time data processing and analysis are often 
used in healthcare applications for patient 
monitoring and evaluation. This case study 
investigates the application of distributed task 
offloading using NSGA-II and PSO algorithms 
inside a fog computing architecture to solve the 
issues of latency, energy consumption, and 
resource efficiency in healthcare contexts.

A. Scenario
Wearable medical technology is used in hospitals 
to track patients' vital indicators including heart 
rate, blood pressure, and oxygen saturation. 
These gadgets continually gather information 
and send it to a centralized system for evaluation 
and diagnosis.

B. Challenges
Accurate results and quick responses are essential 
for real-time health data processing. However, 
analyzing such data on wearable devices with 
limited resources may be computationally and 
energetically taxing. It is crucial to offload work 
to adjacent fog nodes while maintaining low 
latency and efficient energy use.

C. Solution
A distributed task offloading algorithm is 
designed based on NSGA-II and PSO algorithms 
to handle the following issues:

 Issue Propagation
i.  Reduce Latency: The main objective is to 
reduce the amount of time needed to process and 
analyze health data in order to ensure prompt 
diagnosis and action.
ii. Reduce Energy Consumption: The second 
objective is to reduce energy use while carrying 
out tasks through wearable technology and fog 
nodes. 

 Population Initialization
Each potential solution in the population 
represents a method for job offloading. Each 
solution specifies, taking into consideration 
processing power and energy resources, which 
tasks are delegated to which fog nodes.

 NSGA-II and PSO Execution
In order to identify a collection of Pareto-optimal 
solutions that balance minimizing delay and 
energy usage, NSGA-II develops the population. 
In order to identify the best work offloading 
arrangements, PSO refines solutions by 
simulating particle motion in the solution space.

 Fitness Evaluation
On the basis of task execution time, 
communication latency, and energy consumption, 
solutions are assessed. The properties of wearable 
technology, fog nodes, and the communication 
network are used to determine these measures.

 Pareto Front Selection
The Pareto-optimal solutions found by NSGA-II 
reflect various trade-offs between reducing 
latency and maximizing energy efficiency.

 PSO Swarm Update
PSO particles modify their locations to move in 
the direction of the NSGA-II's best conclusions. 
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The task offloading configurations are improved 
by the swarm exploration method. 

 Offloading Decision
The trade-offs between minimizing latency and 
energy usage are taken into consideration while 
making final offloading selections. In order to 
save energy, fewer time-sensitive processes 
might be offloaded to the cloud while critical jobs 
may be offloaded to fog nodes for speedy 
analysis. Fog computing's distributed work 
offloading system enhances real-time health data 
analysis in healthcare settings by combining 
NSGA-II and PSO algorithms. In a hospital 
setting, this method assures prompt replies, 
resource efficiency, and energy effectiveness, all 
of which improve patient care and medical 
decision-making.

3.3. Proposed NSGA II Based Task   
 Offloading Algorithm
We used the NSGA II algorithm to achieve the 
goal because it will reduce task latency or 
application loop delays by minimizing the 
average waiting time between tasks. Because the 
fog devices have limited resources, the fog 
systems have been adapted to produce tasks that 
are short and easy for these devices to handle. 
These algorithms distribute the tasks according 
on the MIPS. The NSGAII algorithm for 
distributed task offloading is given as:

Algorithm1: NSGAII algorithm for task 
offloading

A tuple is submitted to the scheduler whenever it 
arrives at the fog device. The task will be sent for 
execution if the scheduler determines that it is not 
overloaded; otherwise, it will be placed in the 
waiting queue that is kept at each fog device. The 
waiting queue is provided to the NSGA II 
algorithm and, after calculation, NSGA II returns 
the waiting list with the best solution and puts it 
into the execution queue. When a task has finished 
being executed, it is added to the finished queue, 
and the procedure is then continued.
The methodology of NSGA-II algorithm for 
distributed task offloading is shown in figure 2. 

Figure 2: Methodology of NSGAII algorithm 
for Distributed task offloading

3.4. PSO Based Task Offloading Algorithm
We used the PSO algorithm to achieve the goal 
because it will reduce task latency or application 
loop delays by minimizing the average waiting 
time between tasks. Because the fog devices have 
limited resources, the fog systems have been 
adapted to produce tasks that are short and easy 
for these devices to handle. These algorithms 
distribute the tasks according on the MIPS.

Algorithm 2: PSO algorithm for task offloading
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Algorithm 3 explains the functionality of PSO 
the algorithm. A tuple is submitted to the 
scheduler whenever it arrives at the fog device. 
The task will be sent for execution if the 
scheduler determines that it is not overloaded; 
otherwise, it will be placed in the waiting queue 
that is kept at each fog device. The waiting queue 
is provided to the PSO algorithm and, after 
calculation, PSO returns the waiting list with the 
best solution and puts it into the execution queue. 
When a task has finished being executed, it is 
added to the finished queue, and the procedure is 
then continued. Figure 3 presents the 
methodology of PSO algorithm for distributed 
task offloading. 

Figure 3: Methodology of PSO algorithm for 
distributed task offloading.

4. RESULTS AND DISCUSSIONS

4.1. Simulation setup
We have used iFogSim to simulate our offloading 
strategies. IFogsim is a powerful toolset for 
simulating resource management strategies in 
IoT and fog computing scenarios. To allow the 
deployment of distributed task offloading 
techniques for multi-objective optimization, we 
updated iFogSim. We add certain classes to be 
implemented over the scheduler, as well as 
update various iFogSim classes. Below is a quick 
overview of the classes that are commonly used:

A. Sensors
To simulate Internet of Things sensors, use this 
class. Tuples can be used to send data from 
sensor instances to Fog devices. This class is 
used to create tuples of different sizes.

B. Fog Device 
This class's instances are used to represent 
various fog-generating devices. Memory, 
processing power, storage capacity, and uplink 
and downlink bandwidths are all included for   

each Fog device. Fog nodes may have numerous 
levels. The tuples are a means by which each fog 
node can interact with other fog nodes at a higher 
level and with objects inthe IoE layer. Each Fog 
node is capable of processing the arriving tuples 
that the scheduler has chosen based on MIPS. 

C. Tuples
All of the fog's entities communicate with one 
another via instances of the tuple class. Each tuple 
is made up of source, destination, and processing 
demands expressed in MIPS.

D. Tuple Algo scheduler
This class is an extension of Cloudlet Scheduler, 
which manages three queues: the execution queue 
(QE), the finished queue (QF), and the waiting 
queue (Qw). All of the pairs on the waiting list are 
those that are awaiting execution, while those on 
the finish list have finished their execution. The 
NSGAII and PSO algorithms are implemented by 
the Tuple Algo Scheduler class by keeping the 
following three queues when a tuple is overloaded 
and delivered to the waiting list. 
i.  Cloudlet Exec List: This queue contains the 
cloudlets that are to be run on VMs. 
ii.   Cloudlet Finish List: This queue includes a list 
of cloudlets whose execution has been completed.
iii.  Cloudlet Waiting List: These cloudlets are in 
this queue and are awaiting execution.

Figure 4: sequence diagram of NSGAII for 
distributed task offloading

Figure 4 displays the tuple emission, scheduling, 
and execution of NSGAII algorithm. In whicha 
tuple sent from a sensor using the Transmit() 
method is transmitted to a low-level connected  
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fog device using the Send (tuple) function. When 
a tuple arrives, the Fog device invokes the 
callback function processTupleArrival(). This 
method determines whether the tuple should be 
processed at the fog device or forwarded to a 
higher-level fog device. The SendupTuple() 
method sends the tuple to an upper level fog 
device if it is overloaded, otherwise the same 
level fog device processes it. Overloaded Tuples 
are sent to the TupleAlgoScheduler class, where 
tuples in the waiting queue QW are sent to the 
NSGA(). The load was distributed using NSGA() 
using the getsolution() technique. The scheduled 
tuple is then transmitted to the Fog device for 
execution once SchedulenextTuple() has chosen 
the next one. When a tuple is fully executed, the 
CloudletFinish () method sends the scheduler a 
request for the execution of the next tuple. The 
finished tuple is added to the finished tuple queue 
QF using this function.
Figure 5 displays the tuple emission, scheduling, 
and execution of PSO algorithm.

Figure 5: sequence diagram of PSO for 
distributed task offloading

As seen in the figure 5, a tuple sent from a sensor 
using the Transmit() method is transmitted to a 
low-level connected fog device using the 
Send(tuple) function. When a tuple arrives, the 
Fog device invokes the callback function 
processTupleArrival(). This method determines 
whether the tuple should be processed at the fog 
device or forwarded to a higher-level fog device. 
The SendupTuple() method sends the tuple to an 
upper level fog device if it is overloaded, 
otherwise the same level fog device processes it. 
Overloaded Tuples are sent to the 
TupleAlgoScheduler class, where tuples in the 
waiting queue QW are sent to the PSO(). The 
load was distributed using PSO() by execute() 

method. The scheduled tuple is then transmitted to 
the Fog device for execution once 
SchedulenextTuple() has chosen the next one. 
When a tuple is fully executed, the 
CloudletFinish() method sends the scheduler a 
request for the execution of the next tuple. The 
finished tuple is added to the finished tuple queue 
QF using this function.

4.2. Configurations
We have conducted thorough simulation-based 
research to investigate the effects of the NSGAII 
and PSO for distributed work offloading. In order 
to evaluate the effectiveness of these approaches, 
we ran a number of experiments using five 
overlay topologies with a total of 30, 35, 40, 45, 
and 50 nodes, respectively. These topologies 
combine nodes into four tiers, simulating the 
architecture of fog computing. The lowest layer is 
made up of sensors and actuators; the highest 
layer is made up of low-level fog devices; the 
second highest layer is made up of high-level fog 
devices; and the topmost layer is made up of 
clouds. We used high-intensity fog devices 
ranging from 1 to 5 for each set of experiments. 
The number of low-level fog nodes ranges from 6 
to 10, accordingly. Each fog device receives 
information from sensors that are attached to it 
and takes appropriate action. For each 
configuration, the simulation takes 400 units of 
time. Table 2 displays the parameters for fog 
nodes at each level.

Table 2: Configuration of Fog nodes

4.3. Distributed task offloading on fog   
 devices
This section analyses the outcomes of distributed 
task offloading for the various types of load 
employed by various fog devices using FCFS, 
NSGAII, and PSO. The load used by all fog 
devices is indicated along the y-axis, while 
various devices are displayed along the x-axis. 
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Grey denotes the PSO, orange the NSGAII, and 
blue the FCFS. The FCFS result has varied loads 
on various devices, as shown in figure 6, however 
after using the suggested algorithms (NSGAII 
and PSO), all devices have almost identical 
loads.

Figure 6: Distributed task offloading on fog 
devices

4.4. Performance  metrics
We have chosen four criteria, namely loop 
delays; energy consumption; network utilization; 
and cost of execution to compare the 
performance of NSGAII and PSO for distributed 
task offloading against the FCFS algorithm.

A. Average Loop Delay
To evaluate the end-to-end latency of each 
module in the loop, we apply a control loop. We 
calculate the average CPU time, Tcpu, used by all 
tuples of a specific type in order to determine the 
loop delay. We use Equation 1 and 2 to calculate 
this average as given below. 

Tcpu =           BTi ×N+FTi –BTi                (1)                                
                      N+1

If the computed average CPU time for a specific 
type of tuple otherwise

                    FTi–BTi                               (2)

Where BTi is the beginning execution time by all 
tuples of a specific type of tuple, FTi is the finish 
execution time of ith tuple, and N is the total 
number of executed tuples of a specific type. We 
calculate the execution delay of every tuple by 
using this Equation (3).

Delayi =  BTi -FTi            i Є T                 (3)

Where T represents the current tuple set. Figure 7 
displays the loop latency in milliseconds for 
various IoE node sizes. The PSO and NSGAII 

algorithms were used to compute it, and the 
results were compared to FCFS.

Figure 7: Application loop delay by applying     
PSO, NSGAII and FCFS

The x-axis shows the number of nodes, while the 
y-axis shows the latencies of the application 
loops. The average loop delay while using FCFS 
is depicted in blue, whereas the average loop 
delay when using NSGAII is depicted in orange, 
and the average loop delay when using PSO is 
depicted in grey. In contrast to NSGAII and PSO, 
the graph shows that FCFS has increased latency 
as the number of nodes rises. 

B. Tuple CPU execution delay
This metrics defines the amount of time it takes to 
complete the processing of every type of tuple. 

Figure 8: Tuple CPU execution delay of FCFS, 
NSGAII and PSO

Figure 8 displays the execution latency for tuples 
on the CPU. The PSO and NSGAII algorithms 
were used to compute it, and the results were 
compared to FCFS. The x-axis shows SERTIME, 
VM_C, data transmission, Net_usg, and IoT 
while the y-axis shows the application loop 
latencies. The average loop delay while using 
FCFS is depicted in blue, whereas the average 
loop delay when using NSGAII is depicted in 
orange, and the average loop delay when using 
PSO is depicted in grey. The picture shows that 
NSGAII has a greater SERTIME than the other 
two algorithms, although VM_C and are the same 
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for all algorithms. In contrast to NSGAII and 
PSO, Net_usg, data transfer and IoT of FCFS 
have longer tuple CPU execution delays.

C. Energy consumption
We calculate how much energy a Fog device uses 
E FN, by using Equation 4.

          E F N = Ep+ (Tp− Tl) × PH             (4)

The power of all the hosts within a specified time 
period can be used to calculate the energy of any 
Fog device, where Ep denotes the present energy 
consumption, Tp  is the present time, Tl the 
update time of the previous utilization, and PH 
the host power during the last utilization.

Figure 9: Average energy consumed by 
applying PSO, NSGAII and FCFS

Figure 9 shows the typical energy consumption 
of fog devices using the FCFS, NSGAII and PSO 
algorithms. The x-axis is used to indicate the 
devices, while the y-axis, or mega joules, is used 
to show how much energy each fog device uses. 
Orange represent PSO and blue reflect the FCFS 
findings, while grey displays the NSGA results. 
This graph illustrates the average energy 
consumption of algorithms and shows that 
NSGA consumes less energy than FCFS and 
PSO.

D. Network Usage
Network utilization Nu is the third evaluation 
parameter. As the number of devices grows, so 
does network usage, which causes congestion. 
Equation (5) is used to compute network usage 
for us.
                      
              Nu=∑_i=1 Li * Ni                       (5)
                                                       
Where Ni is the network size of the Ith tuple, Li 
is the latency, and N is the total number of tuples.
Figure 10, shows how fog devices use the 
network and compares the FCFS algorithm to the 

NSGAII, PSO. 

Figure 10: Network usage by applying NSGAII, 
PSO and FCFS

The x-axis shows the number of nodes, while the 
y-axis, or kilobytes, and displays the network size 
consumed by all fog devices. While blue indicates 
the FCFS, grey depicts the PSO findings, and 
orange displays the NSGA results. Figure 10 
compares the network utilization of the NSGAII, 
PSO, and FCFS algorithms and demonstrates that, 
as the number of fog nodes rises, NSGAII and 
PSO utilize less network than FCFS.

E. Cost of Execution
One of the parameters used to evaluate the 
recommended module's reliability and 
accessibility is its execution cost. Execution cost 
can be compute by using Equation 6.

       CE = FC + VC / NUP                      (6)

CE represents "total execution cost," FC for "fixed 
cost," VC for "variable cost," and NUP for 
"number of units generated."
Figure 11 illustrates the execution cost required 
by fog devices and compares the FCFS method to 
the NSGAII algorithm and the PSO algorithm. 
The x-axis shows the number of nodes, while the 
y-axis displays the total cost of all fog devices. 
Grey depicts the PSO findings, orange the 
NSGAII results, and blue the FCFS results.

Figure 11: Cost of execution by applying PSO, 
NSGAII and  FCFS  
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The outcomes demonstrate that the NSGAII 
performs better than PSO and FCFS for latency 
sensitive applications. The loop delay, energy 
consumption and network usage reduced by 
NSGAII as compare to PSO and FCFS. 
However, in cost of execution when the number 
of nodes increases, PSO cost of execution is 
lower than that of NSGAII and FCFS algorithms.

5. CONCLUSIONS AND FUTURE  
 WORK
Due to an increasing number of IoT devices, a 
massive amount of data is generated daily. 
Cloud-centric  Internet of Things  (CIoT)  based 
architecture is used for data processing, storage, 
and analysis. However, it is difficult for the CIoT 
to handle the sheer amount of data produced by 
these devices. To overcome these problems, the 
concept of fog computing is introduced that 
extends cloud computing by moving the 
computing, processing, storage, and networking 
facilities to the edge of the network. Due to 
resource-constrained edge devices, task 
offloading becomes a significant issue that needs 
attention. approaches for efficient and 
online-distributed task offloading. We shall use 
analytical modelling for capacity planning of 
these resource-constrained devices.In this paper, 
we have designed and implemented an NSGA 
II-based optimal distributed task offloading 
technique that is applied to a single overloaded 
fog node and distributes its load over several 
nodes. The proposed algorithm minimizes 
average loop latency, network use, and energy 
consumption by offloading tasks to fog devices 
based on duration. In the future, we shall apply 
reinforcement learning-based and 
multi-agent-based DRL approaches for efficient 
and online-distributed task offloading. We shall 
use analytical modelling for capacity planning of 
these resource-constrained devices.

REFERENCES
[1] M. H. Miraz et al., “Internet of 
Nano-Things, Things and Everything: Future 
Growth Trends,” Future Internet, vol. 10, no. 8, 
pp. 68, DOI: 10.3390/fi10080068, 2018.

[2] A. R. H. Hussein, “Internet of Things 
(IOT): Research Challenges and Future 
Applications,” (IJACSA) International Journal 
of Advanced Computer Science and Applications, 
Vol. 10, No. 6, 2019.

[3] M. Ghobaei-Arani et al., “Resource 
Management Approaches in Fog Computing: a 
Comprehensive Review,” J. Grid Comput., vol. 
18, no. 1, pp.1-42, 2020.

[4] M. Y. Akhlaqi and Z. B. M. Hanapi,  
“Task offloading paradigm in mobile edge 
computing-current issues, adopted approaches, 
and future directions,” Journal of Network and 
Computer Applications, 212, pp. 103568, 2023.

[5] J. V. Morey and S. K. Addya, “Efficient 
Task Offloading in IoT-Fog Network,” In 
Proceedings of the 24th International Conference 
on Distributed Computing and Networking, (pp. 
288-289), (January, 2023).

[6] C. F.  Liu et al,  “Dynamic  Task  
Offloading  and  Resource  Allocation  for  
Ultra-Reliable  Low Latency Edge Computing,” 
IEEE Communication Survey, vol. 20, pp. 
416–464, 2020.

[7] C. Fricker et al., “Analysis of an 
offloading scheme for data centers in the 
framework of fog computing,” ACM Transactions 
on Modeling and Performance Evaluation of 
Computing Systems (TOMPECS), 1(4), pp. 1-18, 
2016.

[8] A. Yousefpour et al., “On reducing IoT 
service delay via fog offloading,” IEEE Internet of 
things Journal, 5(2), pp. 998-1010, 2018.

[9] M. Aazam et al., “Offloading in fog 
computing for IoT: Review, enabling 
technologies, and research opportunities,” Future 
Generation Computer Systems, 87, pp. 278-289,  
2018.

[10] A. M. A. Hamdi et al., “Task offloading 
in vehicular fog computing: State-of-the-art and 
open issues,” Future Generation Computer 
Systems, 133, pp. 201-212, 2022.

[11] J. Xu and S. Ren, “Online learning for 
offloading and auto scaling in renewable-powered 
mobile edge computing,” In Global 
Communications Conference (GLOBECOM), pp. 
1-6, IEEE, 2016.

[12] J. Wang  et  al.  “Computation  
Offloading  in  Multi-Access Edge  Computing  

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT    54



Using  a  Deep  Sequential  Model  Based  on  
Reinforcement  Learning,”  IEEE 
Communications Magazine, 57(5), pp. 64-69, 
2019.

[13] Y. Pan et al., “Latency minimization for 
task offloading in hierarchical fog-computing 
C-RAN networks,” In ICC 2020-2020 IEEE 
International Conference on Communications 
(ICC), (pp. 1-6), IEEE, 2020.

[14] C. F. Liu et al., “Dynamic task 
offloading and resource allocation for 
ultra-reliable low-latency edge computing,” 
IEEE Transactions on Communications, Vol. 67, 
no. 6, pp. 4132-4150, 2019.

[15] H. Tran-Dang and D. S. Kim, “A survey 
on matching theory for distributed computation 
offloading in iot-fog-cloud systems: Perspectives 
and open issues,” IEEE Access,  Vol. 10, 
pp.118353-118369, 2022. 

[16] Z. Chang et al., “Energy efficient 
optimization for computation offloading in fog 
computing system,” In GLOBECOM 2017-2017 
IEEE Global Communications Conference, (pp. 
1-6), IEEE, (December, 2017). 

[17] Y. Nan et al., “A dynamic tradeoff data 
processing framework for delay-sensitive 
applications in cloud of things systems,” Journal 
of Parallel and Distributed Computing, 112, pp. 
53-66, 2018.

[18] X. Xu et al., “Multi-objective 
computation offloading for internet of vehicles in 
cloud-edge computing,” Wireless Networks, 26, 
pp. 1611-1629, 2020.
     
[19] M. Adhikari et al., “DPTO: A deadline 
and priority-aware task offloading in fog 
computing framework leveraging multilevel 
feedback queueing,” IEEE Internet of Things 
Journal, 7(7), pp. 5773-5782, 2019.

[20] S. Chen et al., “Distributed task 
offloading game in multiserver mobile edge 
computing networks,” Complexity, pp. 1-14, 
2020.

[21] Y. Wang et al., “Latency-optimal 
computational offloading strategy for sensitive 
tasks in smart homes,” Sensors, 21(7), 2347, 
2021. 

[22] T. T. Vu et al., “Optimal energy 
efficiency with delay constraints for multi-layer 
cooperative fog computing networks,” IEEE 
Transactions on Communications, 69(6), pp. 
3911-3929, 2021.

[23] W. Hou et al., “Multiagent deep 
reinforcement learning for task offloading and 
resource allocation in cybertwin-based 
networks,”  IEEE Internet of Things Journal, 
8(22), pp. 16256-16268, 2021.

[24] U. M. Malik et al., “Efficient 
Matching-Based Parallel Task Offloading in IoT 
Networks,” Sensors, 22(18), 6906, 2022.

[25] A. Kishor and C. Chakarbarty, “Task 
Offloading in Fog Computing for Using Smart 
Ant Colony Optimization,” Wireless Personal 
Communications, 127(2),  pp.1683-1704, 2022.

[26] W. Shi et al., “Task Offloading 
Decision-Making Algorithm for Vehicular Edge 
Computing:  A Deep-Reinforcement-Learn-
ing-Based Approach,” Sensors, 23(17), pp. 7595, 
2023.

[27] H. Tran-Dang, and D. S. Kim, “Dynamic 
Collaborative Task Offloading in Fog Computing 
Systems,” In Cooperative and Distributed 
Intelligent Computation in Fog Computing: 
Concepts, Architectures, and Frameworks, Cham: 
Springer Nature Switzerland, (pp. 83-100), 2023. 

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT    55


