
Multi-Objective Optimization Based Distributed Task Offloading in
Fog Computing

Tehmina Rani1, Bushra Jamil1*, Humaira Ijaz1

Department of CS & IT, University of Sargodha, Sargodha, Pakistan.

Email: bushra.jamil@uos.edu.pk

ABSTRACT:
 The Internet of Things, with its promise of ubiquitous connectivity, leads to the connectivity
of billions of devices continuously generating a sheer volume of data processed by Cloud-centric
Internet of Things (CIoT) based architecture. Cloud data centers reside multi-hop away from the end
user, resulting in certain limitations like long latency, bandwidth, and scalability. Fog computing
addresses these challenges by extending cloud-computing capabilities to the edge of the network, thus
alleviating these concerns. However, the efficient execution of diverse nature fog applications on these
distributed, heterogeneous, and resource-constrained fog devices needs efficient resource manage-
ment techniques. Among these techniques, distributed task offloading is the one that efficiently moves
the tasks from resource-limited fog devices to multiple resource-rich devices. An efficient distributed
task-offloading algorithm is imperative to minimize latency and cost, optimize resource utilization,
conserve bandwidth, and improve the quality of service. In this paper, we propose a multi-objective
optimization-based distributed task-offloading algorithm based on NSGA-II, which reduces latency,
network utilization, cost, and energy consumption. We evaluate the proposed offloading algorithm
using iFogSim in comparison with PSO and FCFS approaches. The results show that the delay, cost
and network usage of the proposed algorithm is much better as compared to baseline algorithms.

KEYWORDS: Fog Computing, CIoT, Multi-Objective Optimization, Distributed Task Offloading.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 44

1. INTRODUCTION
IoT is an environment that consists of a large no
of heterogeneous interrelated devices over the
internet for connecting and sharing data with
other devices without human interference [1].
With the advancement of communication
technology, the number of IoT and connected
devices has increased, which produces an
enormous amount of data. Initially, Cloud-centric
Internet of Things (CIoT) based architecture is
used, but it is difficult for the CIoT alone to
handle this vast amount of data [2]. Furthermore,
Cloud data centers are multiple hops away from
the source of data origin. Transmitting data to the
cloud will consume increased bandwidth and
elevate latency and cost that's why cloud
computing is not an ideal choice for real-time
applications.

1.1. Fog Computing
To overcome these problems the concept of fog
computing was introduced by Cisco, which
extends cloud computing by moving the
computing, processing, storage, and networking
facilities to the edge of the network. Fog
computing is a distributed computing
infrastructure that provides low latency, efficient
resource management, and real-time processing
near the edge of the network [3]. The hierarchical,
bi-directional and distributed architecture of fog
computing is shown in Figure 1.

A. Edge Tier
The devices in the Edge tier act as the entry points
to the fog computing net-work such as IoT
sensors, smartphones, cam-eras, and embedded
systems. These devices gather data and perform

Rani et al. LGURJCSIT 2023 ISSN: 2521-0122 (Online)
ISSN: 2519-7991 (Print)

LGU Research Journal of
Computer Science & IT

doi: 10.54692/lgurjcsit.2023.074486

Vol (7): Issue (4), October December 2023

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 45

initial data pro-cessing near the data source.

Figure 1: Fog Computing Architecture

B. Fog Tier
Fog tier consists of intermediary computing
devices situated closer to the edge devices than
traditional cloud data centers like micro data
centers, routers, and switches. These nodes
collect data from the edge tier, process it, and
perform necessary computa-tions for intelligent
decisions.

C. Cloud Tier
The topmost tier of the architec-ture, known as
the cloud, is made up of a number of
high-capacity data centers for long-term
decision-making.
Fog computing has different characteris-tics such
as heterogeneity, resource and ener-gy limitation,
context awareness, and mobili-ty. The
ever-increasing number of IoT appli-cations and
devices generate an enormous amount of data
that needs processing on these fog devices.
However, the dynamic nature, heteroge-neity,
and resource-constrained fog devices make
resource management a critical issue in fog
computing. Therefore, efficient pro-cessing of
the data generated by heterogene-ous IoT
applications with different QoS re-quirements
needs efficient exploration and use of available
fog nodes via task offloading.

1.2. Distributed Task Offloading in Fog
Task offloading is a procedure of moving
computing some tasks or workloads from
resource-limited to resource-rich devices. In task
offloading, the tasks are sent to a single node,
while in distributed task offloading tasks are
dynamically distributed across multiple fog
nodes. Distributed task offloading deals with the
intelligent allocation of tasks to the most suitable
and available computing resources within the fog
network based on various factors, including the

computational requirements of the task, the
proximity of resources, current resource
utilization, and network conditions [4,5]. This
ensures efficient resource utilization, minimizes
latency, and enhances the scalability and fault
tolerance of fog computing systems. Task
offloading in fog computing is still in its early
stages despite the existence of prior proposals for
various task-offloading techniques. To identify
their shortcomings in supporting the optimization
of latency, network utilization, and energy
consumption, we have conducted a brief literature
analysis on the relevant literature about the
various task offloading methodologies currently
used in fog computing. It is discovered that the
task offloading techniques now in use either
complete mono-or bijective jobs or offload duties
to a single node. Most task-offloading techniques
pay attention to latency problems and overlook
other factors. Therefore, it is necessary to develop
a multi-objective optimization-based distributed
task offloading strategy to distribute work among
several fog nodes while optimizing performance
and resource usage. For the implementation of
NSGAII, PSO, and FCFS for distributed task
offloading, we used iFogsim.This research paper
is concerned with the de-sign, implementation,
and evaluation of a multi-objective
optimization-based distribut-ed task offloading
algorithm that efficiently offloads tasks on fog
nodes according to the requirements. The
following are the main contributions of the
suggested work.
i. We investigate metrics optimized and
limitations of the existing task offloading
algorithms.
ii. We design and implement an
NSGA-II-based multi-objective optimization
algo-rithm for distributed task offloading in a
fog-cloud computing environment using
iFogSim.
iii. We determine the effectiveness of our
proposed algorithm in terms of latency, energy
consumption, cost, and network usage and
compare the results with the FCFS and Particle
Swarm Optimization (PSO) algorithm.
The remainder of the article is structured as
follows. In Section II, we present detailed the
literature review that is closely related to our
work. A summary and research solution for
distributed task offloading based on
multi-objective optimization in fog computing are
presented in Section III. The evaluation process
and simulation model utilized in this paper are

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 46

described in Section IV. The implementation of
NSGAII and PSO for distributed task offloading
is presented, and the outcomes of these
algorithms are contrasted with FCFS. In Section
V, we explain the research's outcomes and
provide recommendations for further study.

2. RELATED WORK
In this section we have reviewed centralized,
distributed, dynamic, hierarchical, heuristic, GA,
and reinforcement learning-based algorithms that
have been proposed for optimization of task
offloading for the different metrics such as:
Performance Metrics, Resource Usage, Financial
Costs, and Energy usage. Load balancing was
employed by Fricker et al. [6] to start offloading
the jobs inside the fog datacenters. The authors
outlined a situation in which a request arrives at a
datacenter that is overburdened and is routed to a
datacenter next door that has an equal chance of
getting the request. According to their method,
more requests are declined or banned depending
on whether they can offload duties once a
datacenter is overcrowded. The authors
essentially offloaded work based on request
blockage rate. Energy usage was emphasized by
Zhang et al. [7]. They provided a mechanism for
offloading computing in 5G networks that is
energy-efficient. Their suggested offloading
mechanism accounts for both the energy used
during task execution and the energy used during
transmission or transferring of the job. In order to
reduce the total power use of the offloading
process, the offloading system improves both the
job offloading and radio resource allocation in 5G
networks. Yousefpour et al. [8] delay-minimizing
offloading strategy for fog nodes takes into
account different request types with varying
processing durations in addition to the queue's
length. Following this, it decides whether or not
to offload the chosen tasks to its best neighbor fog
node if the projected waiting time of the fog node
is more than an acceptable threshold.
Without using any categories, Aazam et al. [9]
described the typical techniques utilized for work
offloading and evaluation of previously
published publications. The comprehensive
literature review based on the choice of fog nodes
throughout task offloading in VFC was reported
by Hamdi et al. [10]. They concluded their work
by discussing the problems and restrictions of
their research. For single type offloading, Xu et
al. Apply reinforcement learning techniques to
lower overall cost in delay-sensitive applica-

tions [11]. A deep neural network (DNN) model
that uses reinforcement learning to offload
challenging tasks. Wang and fellows present a
novel approach for task offloading for the edge
that combines deep sequential models and
reinforcement learning to optimize resource
consumption in [12].
In order to solve minimize delay problem for task
offloading in hierarchical fog computing network
Pan et al., formulate the task offloading problem
as linear integer problem [13]. Liu and fellows
[14] delve into critical aspects of task offloading
to meet the demands of ultra-reliable low latency
application using extreme value theory. The prima-
ry goal of the study is to minimize the user’s
power consumption along with efficient resource
allocation. By utilizing matching theory, Tran et
al., investigated several offloading strategies for
resource management [15]. In the NSGA-III
algorithm, which is based on GA-based offload-
ing, A queueing theory based task-offloading
algorithm is suggested to minimize execution
delay and optimize energy consumption in [16].
Nan and fellows propose an online algorithm
based on Lyapunov optimization technique to
balance the tradeoff between average response
time, cost and number of application loss [17]. Xu
et al., presented a multi-objective based computa-
tion offloading method (MOC) that has better
latency and cost, but more work needs to be done
to efficiently distribute resources for the Internet
of Vehicles (IOV), such as delay management and
energy consumption [18]. The authors claimed
that their algorithm is not only cost effective but
also minimize response time and average no of
applications. Adhikri and fellows propose an
innovative task offloading approach that
combines deadline and priority requirements of
tasks using multi-level feedback queues [19]. The
algorithm offers minimal latency along prioritiaed
execution. Chang et al., use game theory to
optimize task offloading in multi-server edge
computing in overlapping service areas of mobile
users [20]. They apply non-cooperative game
method using real-time update computation
offloading (RUCO) algorithm that uses Nash
equilibrium, and a multi-user probabilistic offload-
ing decision algorithm to address this problem. A
backpressure algorithm based task-offloading
algorithm to minimize delay of latency-sensitive
tasks in smart homes is presented in [21]. This
algorithm minimize the queue length of tasks by
minimizing Lyapunov drift optimization
algorithm in each slot to improve the stability of

the queue and offloading performance. In 2021,
Vu and fellows present a joint task offloading and
resource allocation algorithm for multi-layer
cooperative fog network that exploits energy
efficient techniques ensuring to meet delay
constraints and network performance
optimization [22]. Hou and fellows propose a
hierarchical task offloading technique for
latency-sensitive and delay-tolerant applications
that integrate artificial intelligence and edge
computing to ensure the quality of service,
minimized latency and service that is more
reliable in [23]. In 2022, Malik and fellows
present a matching based parallel offloading
technique for optimizing resource utilization and
minimizing latency in IoT networks [24]. The

Table 1: Comparison of Existing Task
Offloading Algorithms

authors generated preference profiles for different
IoT nodes, for task-offloading decision due to
which latency is reduced up to 52% for heavy task
load.Kishor et al. takes inspiration from nature to
optimize task distribution in fog computing
environments [25]. This study leverage smart Ant
Colony Optimization (ACO) to increase the
efficiency of resource allocation along with
minimization of latency. Shi and fellows present a
task-offloading algorithm based on deep
deterministic policy gradient (DDPG) algorithm
for vehicular fog computing environment [26].
The authors compared the results of proposed
algorithm with deep Q-learning and actor-critic
algorithm and claimed to get better results in
terms of reducing cost. Tran-Dang et al. present a
dynamic and collaborative approach for task
offloading to process the data efficiently [27]. This
study leverage the performance of fog computing
by real-time collaboration between fog nodes to
reduce average delay with high rate of service
requests. Table 1, presents the comparison of the
proposed task offloading techniques in terms of
optimization metrics, and simulator used.
Literature review and analysis show that existing
task offloading approaches are either mono or
bijective or offload tasks to one node. Most
current algorithms focus on latency issues while
ignoring other parameters during task offloading.
Therefore, there is a need to design an efficient
multi-objective optimization-based distributed
task offloading algorithm that offloads tasks to
multiple fog nodes along with efficient utilization
of resources and performance optimization.

3. DESIGN AND IMPLEMENTATION
Tome of the tasks to the cloud or fog because we
need an additional entity that executes the task
and returns the result immediately after execution
to support a real-time application and to increase
efficiency. Effective task offloading strategies are
necessary to effectively optimize resources,
accelerate response times, and boost the
effectiveness of complicated systems. In order to
distribute tasks to various fog nodes while
maximizing resource utilization, minimizing
latency, minimizing cost, energy consumption,
and network usage., we will develop an effective
multi-objective optimization-based distributed
task offloading approach.

3.1. Application types in Fog Computing
Fog computing brings processing, storage, and
networking resources closer to where data is

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 47

Sr. # Tech. Metrics Simulator Ref.

1

4

Analytical
Modelling

Latency
Service delay

_

_

_

8

2 DRL Latency 12

3
Majorization-
minimization Latency Monti-Carlo 13

Extreme
value theory

Delay
Power

con-sumption
14

6 CloudsimNSGA-III
Energy

con-sumption,
delay

18

7 _Priority-
based

Waiting time,
throughput,

deadline
19

8 _Non-cooperative
game method

cost 20

9 _Lyapunov
optimization

delay 21

10 _Branch and
Bound, FFBD

Energy con-
sumption,

delay
22

11 _Multi-agent DRL delay 23

12 _

_

Matching-based delay 24

13 MATLABMeta-Heuristic Latency, QoS 25

14 PythonDDPG cost 26

15 DCTO

Reduce
delay,
high

service rate

27

5 _Lyapunov
optimization 17

Response
time, cost,

no of
applica-tion

loss

created and consumed by extending the ideas of
cloud computing to the edge of the network. This
enables diverse applications to handle data more
quickly, with less latency, and with more
effectiveness. Here are a few examples of
application types that gain from fog computing:

A. IoT (Internet of Things) Devices
Fog computing is especially helpful for IoT
devices that produce an enormous amount of
data. You may decrease the amount of data that
has to be transferred to the cloud, cutting latency
and preserving bandwidth, by processing data
locally on edge devices or in close-by fog nodes.

B. Smart Cities
Fog computing can be used for a number of smart
city applications, including traffic, waste, and
environmental monitoring. Local processing may
make it possible to react to situations and
occurrences more quickly.

C. Healthcare
In the field of healthcare, fog computing may be
used for wearable health equipment, remote
patient monitoring, and even real-time picture
processing. This enables doctors to diagnose and
decide more quickly.

D. Transportation
Intelligent transportation systems may greatly
benefit from the use of fog computing. It can help
with low-latency applications including real-time
traffic monitoring, autonomous driving, and
vehicle-to-vehicle communication.

3.2. Case study
Real-time data processing and analysis are often
used in healthcare applications for patient
monitoring and evaluation. This case study
investigates the application of distributed task
offloading using NSGA-II and PSO algorithms
inside a fog computing architecture to solve the
issues of latency, energy consumption, and
resource efficiency in healthcare contexts.

A. Scenario
Wearable medical technology is used in hospitals
to track patients' vital indicators including heart
rate, blood pressure, and oxygen saturation.
These gadgets continually gather information
and send it to a centralized system for evaluation
and diagnosis.

B. Challenges
Accurate results and quick responses are essential
for real-time health data processing. However,
analyzing such data on wearable devices with
limited resources may be computationally and
energetically taxing. It is crucial to offload work
to adjacent fog nodes while maintaining low
latency and efficient energy use.

C. Solution
A distributed task offloading algorithm is
designed based on NSGA-II and PSO algorithms
to handle the following issues:

 Issue Propagation
i. Reduce Latency: The main objective is to
reduce the amount of time needed to process and
analyze health data in order to ensure prompt
diagnosis and action.
ii. Reduce Energy Consumption: The second
objective is to reduce energy use while carrying
out tasks through wearable technology and fog
nodes.

 Population Initialization
Each potential solution in the population
represents a method for job offloading. Each
solution specifies, taking into consideration
processing power and energy resources, which
tasks are delegated to which fog nodes.

 NSGA-II and PSO Execution
In order to identify a collection of Pareto-optimal
solutions that balance minimizing delay and
energy usage, NSGA-II develops the population.
In order to identify the best work offloading
arrangements, PSO refines solutions by
simulating particle motion in the solution space.

 Fitness Evaluation
On the basis of task execution time,
communication latency, and energy consumption,
solutions are assessed. The properties of wearable
technology, fog nodes, and the communication
network are used to determine these measures.

 Pareto Front Selection
The Pareto-optimal solutions found by NSGA-II
reflect various trade-offs between reducing
latency and maximizing energy efficiency.

 PSO Swarm Update
PSO particles modify their locations to move in
the direction of the NSGA-II's best conclusions.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 48

The task offloading configurations are improved
by the swarm exploration method.

 Offloading Decision
The trade-offs between minimizing latency and
energy usage are taken into consideration while
making final offloading selections. In order to
save energy, fewer time-sensitive processes
might be offloaded to the cloud while critical jobs
may be offloaded to fog nodes for speedy
analysis. Fog computing's distributed work
offloading system enhances real-time health data
analysis in healthcare settings by combining
NSGA-II and PSO algorithms. In a hospital
setting, this method assures prompt replies,
resource efficiency, and energy effectiveness, all
of which improve patient care and medical
decision-making.

3.3. Proposed NSGA II Based Task
 Offloading Algorithm
We used the NSGA II algorithm to achieve the
goal because it will reduce task latency or
application loop delays by minimizing the
average waiting time between tasks. Because the
fog devices have limited resources, the fog
systems have been adapted to produce tasks that
are short and easy for these devices to handle.
These algorithms distribute the tasks according
on the MIPS. The NSGAII algorithm for
distributed task offloading is given as:

Algorithm1: NSGAII algorithm for task
offloading

A tuple is submitted to the scheduler whenever it
arrives at the fog device. The task will be sent for
execution if the scheduler determines that it is not
overloaded; otherwise, it will be placed in the
waiting queue that is kept at each fog device. The
waiting queue is provided to the NSGA II
algorithm and, after calculation, NSGA II returns
the waiting list with the best solution and puts it
into the execution queue. When a task has finished
being executed, it is added to the finished queue,
and the procedure is then continued.
The methodology of NSGA-II algorithm for
distributed task offloading is shown in figure 2.

Figure 2: Methodology of NSGAII algorithm
for Distributed task offloading

3.4. PSO Based Task Offloading Algorithm
We used the PSO algorithm to achieve the goal
because it will reduce task latency or application
loop delays by minimizing the average waiting
time between tasks. Because the fog devices have
limited resources, the fog systems have been
adapted to produce tasks that are short and easy
for these devices to handle. These algorithms
distribute the tasks according on the MIPS.

Algorithm 2: PSO algorithm for task offloading

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 49

Algorithm 3 explains the functionality of PSO
the algorithm. A tuple is submitted to the
scheduler whenever it arrives at the fog device.
The task will be sent for execution if the
scheduler determines that it is not overloaded;
otherwise, it will be placed in the waiting queue
that is kept at each fog device. The waiting queue
is provided to the PSO algorithm and, after
calculation, PSO returns the waiting list with the
best solution and puts it into the execution queue.
When a task has finished being executed, it is
added to the finished queue, and the procedure is
then continued. Figure 3 presents the
methodology of PSO algorithm for distributed
task offloading.

Figure 3: Methodology of PSO algorithm for
distributed task offloading.

4. RESULTS AND DISCUSSIONS

4.1. Simulation setup
We have used iFogSim to simulate our offloading
strategies. IFogsim is a powerful toolset for
simulating resource management strategies in
IoT and fog computing scenarios. To allow the
deployment of distributed task offloading
techniques for multi-objective optimization, we
updated iFogSim. We add certain classes to be
implemented over the scheduler, as well as
update various iFogSim classes. Below is a quick
overview of the classes that are commonly used:

A. Sensors
To simulate Internet of Things sensors, use this
class. Tuples can be used to send data from
sensor instances to Fog devices. This class is
used to create tuples of different sizes.

B. Fog Device
This class's instances are used to represent
various fog-generating devices. Memory,
processing power, storage capacity, and uplink
and downlink bandwidths are all included for

each Fog device. Fog nodes may have numerous
levels. The tuples are a means by which each fog
node can interact with other fog nodes at a higher
level and with objects inthe IoE layer. Each Fog
node is capable of processing the arriving tuples
that the scheduler has chosen based on MIPS.

C. Tuples
All of the fog's entities communicate with one
another via instances of the tuple class. Each tuple
is made up of source, destination, and processing
demands expressed in MIPS.

D. Tuple Algo scheduler
This class is an extension of Cloudlet Scheduler,
which manages three queues: the execution queue
(QE), the finished queue (QF), and the waiting
queue (Qw). All of the pairs on the waiting list are
those that are awaiting execution, while those on
the finish list have finished their execution. The
NSGAII and PSO algorithms are implemented by
the Tuple Algo Scheduler class by keeping the
following three queues when a tuple is overloaded
and delivered to the waiting list.
i. Cloudlet Exec List: This queue contains the
cloudlets that are to be run on VMs.
ii. Cloudlet Finish List: This queue includes a list
of cloudlets whose execution has been completed.
iii. Cloudlet Waiting List: These cloudlets are in
this queue and are awaiting execution.

Figure 4: sequence diagram of NSGAII for
distributed task offloading

Figure 4 displays the tuple emission, scheduling,
and execution of NSGAII algorithm. In whicha
tuple sent from a sensor using the Transmit()
method is transmitted to a low-level connected

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 50

fog device using the Send (tuple) function. When
a tuple arrives, the Fog device invokes the
callback function processTupleArrival(). This
method determines whether the tuple should be
processed at the fog device or forwarded to a
higher-level fog device. The SendupTuple()
method sends the tuple to an upper level fog
device if it is overloaded, otherwise the same
level fog device processes it. Overloaded Tuples
are sent to the TupleAlgoScheduler class, where
tuples in the waiting queue QW are sent to the
NSGA(). The load was distributed using NSGA()
using the getsolution() technique. The scheduled
tuple is then transmitted to the Fog device for
execution once SchedulenextTuple() has chosen
the next one. When a tuple is fully executed, the
CloudletFinish () method sends the scheduler a
request for the execution of the next tuple. The
finished tuple is added to the finished tuple queue
QF using this function.
Figure 5 displays the tuple emission, scheduling,
and execution of PSO algorithm.

Figure 5: sequence diagram of PSO for
distributed task offloading

As seen in the figure 5, a tuple sent from a sensor
using the Transmit() method is transmitted to a
low-level connected fog device using the
Send(tuple) function. When a tuple arrives, the
Fog device invokes the callback function
processTupleArrival(). This method determines
whether the tuple should be processed at the fog
device or forwarded to a higher-level fog device.
The SendupTuple() method sends the tuple to an
upper level fog device if it is overloaded,
otherwise the same level fog device processes it.
Overloaded Tuples are sent to the
TupleAlgoScheduler class, where tuples in the
waiting queue QW are sent to the PSO(). The
load was distributed using PSO() by execute()

method. The scheduled tuple is then transmitted to
the Fog device for execution once
SchedulenextTuple() has chosen the next one.
When a tuple is fully executed, the
CloudletFinish() method sends the scheduler a
request for the execution of the next tuple. The
finished tuple is added to the finished tuple queue
QF using this function.

4.2. Configurations
We have conducted thorough simulation-based
research to investigate the effects of the NSGAII
and PSO for distributed work offloading. In order
to evaluate the effectiveness of these approaches,
we ran a number of experiments using five
overlay topologies with a total of 30, 35, 40, 45,
and 50 nodes, respectively. These topologies
combine nodes into four tiers, simulating the
architecture of fog computing. The lowest layer is
made up of sensors and actuators; the highest
layer is made up of low-level fog devices; the
second highest layer is made up of high-level fog
devices; and the topmost layer is made up of
clouds. We used high-intensity fog devices
ranging from 1 to 5 for each set of experiments.
The number of low-level fog nodes ranges from 6
to 10, accordingly. Each fog device receives
information from sensors that are attached to it
and takes appropriate action. For each
configuration, the simulation takes 400 units of
time. Table 2 displays the parameters for fog
nodes at each level.

Table 2: Configuration of Fog nodes

4.3. Distributed task offloading on fog
 devices
This section analyses the outcomes of distributed
task offloading for the various types of load
employed by various fog devices using FCFS,
NSGAII, and PSO. The load used by all fog
devices is indicated along the y-axis, while
various devices are displayed along the x-axis.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 51

Name

Cloud

Base
Station

2nd Level
Fog Device

1st Level
Fog Device

3000

2000

1000

1000

20000

1000

10000

5000

100

5000

1000

2000

5000

5000

5000

5000

0

1

2

3

MIPS RAM UPBW DNBW Level

Grey denotes the PSO, orange the NSGAII, and
blue the FCFS. The FCFS result has varied loads
on various devices, as shown in figure 6, however
after using the suggested algorithms (NSGAII
and PSO), all devices have almost identical
loads.

Figure 6: Distributed task offloading on fog
devices

4.4. Performance metrics
We have chosen four criteria, namely loop
delays; energy consumption; network utilization;
and cost of execution to compare the
performance of NSGAII and PSO for distributed
task offloading against the FCFS algorithm.

A. Average Loop Delay
To evaluate the end-to-end latency of each
module in the loop, we apply a control loop. We
calculate the average CPU time, Tcpu, used by all
tuples of a specific type in order to determine the
loop delay. We use Equation 1 and 2 to calculate
this average as given below.

Tcpu = BTi ×N+FTi –BTi (1)
 N+1

If the computed average CPU time for a specific
type of tuple otherwise

 FTi–BTi (2)

Where BTi is the beginning execution time by all
tuples of a specific type of tuple, FTi is the finish
execution time of ith tuple, and N is the total
number of executed tuples of a specific type. We
calculate the execution delay of every tuple by
using this Equation (3).

Delayi = BTi -FTi i Є T (3)

Where T represents the current tuple set. Figure 7
displays the loop latency in milliseconds for
various IoE node sizes. The PSO and NSGAII

algorithms were used to compute it, and the
results were compared to FCFS.

Figure 7: Application loop delay by applying
PSO, NSGAII and FCFS

The x-axis shows the number of nodes, while the
y-axis shows the latencies of the application
loops. The average loop delay while using FCFS
is depicted in blue, whereas the average loop
delay when using NSGAII is depicted in orange,
and the average loop delay when using PSO is
depicted in grey. In contrast to NSGAII and PSO,
the graph shows that FCFS has increased latency
as the number of nodes rises.

B. Tuple CPU execution delay
This metrics defines the amount of time it takes to
complete the processing of every type of tuple.

Figure 8: Tuple CPU execution delay of FCFS,
NSGAII and PSO

Figure 8 displays the execution latency for tuples
on the CPU. The PSO and NSGAII algorithms
were used to compute it, and the results were
compared to FCFS. The x-axis shows SERTIME,
VM_C, data transmission, Net_usg, and IoT
while the y-axis shows the application loop
latencies. The average loop delay while using
FCFS is depicted in blue, whereas the average
loop delay when using NSGAII is depicted in
orange, and the average loop delay when using
PSO is depicted in grey. The picture shows that
NSGAII has a greater SERTIME than the other
two algorithms, although VM_C and are the same

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 52

{

A

for all algorithms. In contrast to NSGAII and
PSO, Net_usg, data transfer and IoT of FCFS
have longer tuple CPU execution delays.

C. Energy consumption
We calculate how much energy a Fog device uses
E FN, by using Equation 4.

 E F N = Ep+ (Tp− Tl) × PH (4)

The power of all the hosts within a specified time
period can be used to calculate the energy of any
Fog device, where Ep denotes the present energy
consumption, Tp is the present time, Tl the
update time of the previous utilization, and PH
the host power during the last utilization.

Figure 9: Average energy consumed by
applying PSO, NSGAII and FCFS

Figure 9 shows the typical energy consumption
of fog devices using the FCFS, NSGAII and PSO
algorithms. The x-axis is used to indicate the
devices, while the y-axis, or mega joules, is used
to show how much energy each fog device uses.
Orange represent PSO and blue reflect the FCFS
findings, while grey displays the NSGA results.
This graph illustrates the average energy
consumption of algorithms and shows that
NSGA consumes less energy than FCFS and
PSO.

D. Network Usage
Network utilization Nu is the third evaluation
parameter. As the number of devices grows, so
does network usage, which causes congestion.
Equation (5) is used to compute network usage
for us.

 Nu=∑_i=1 Li * Ni (5)

Where Ni is the network size of the Ith tuple, Li
is the latency, and N is the total number of tuples.
Figure 10, shows how fog devices use the
network and compares the FCFS algorithm to the

NSGAII, PSO.

Figure 10: Network usage by applying NSGAII,
PSO and FCFS

The x-axis shows the number of nodes, while the
y-axis, or kilobytes, and displays the network size
consumed by all fog devices. While blue indicates
the FCFS, grey depicts the PSO findings, and
orange displays the NSGA results. Figure 10
compares the network utilization of the NSGAII,
PSO, and FCFS algorithms and demonstrates that,
as the number of fog nodes rises, NSGAII and
PSO utilize less network than FCFS.

E. Cost of Execution
One of the parameters used to evaluate the
recommended module's reliability and
accessibility is its execution cost. Execution cost
can be compute by using Equation 6.

 CE = FC + VC / NUP (6)

CE represents "total execution cost," FC for "fixed
cost," VC for "variable cost," and NUP for
"number of units generated."
Figure 11 illustrates the execution cost required
by fog devices and compares the FCFS method to
the NSGAII algorithm and the PSO algorithm.
The x-axis shows the number of nodes, while the
y-axis displays the total cost of all fog devices.
Grey depicts the PSO findings, orange the
NSGAII results, and blue the FCFS results.

Figure 11: Cost of execution by applying PSO,
NSGAII and FCFS

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 53

N

The outcomes demonstrate that the NSGAII
performs better than PSO and FCFS for latency
sensitive applications. The loop delay, energy
consumption and network usage reduced by
NSGAII as compare to PSO and FCFS.
However, in cost of execution when the number
of nodes increases, PSO cost of execution is
lower than that of NSGAII and FCFS algorithms.

5. CONCLUSIONS AND FUTURE
 WORK
Due to an increasing number of IoT devices, a
massive amount of data is generated daily.
Cloud-centric Internet of Things (CIoT) based
architecture is used for data processing, storage,
and analysis. However, it is difficult for the CIoT
to handle the sheer amount of data produced by
these devices. To overcome these problems, the
concept of fog computing is introduced that
extends cloud computing by moving the
computing, processing, storage, and networking
facilities to the edge of the network. Due to
resource-constrained edge devices, task
offloading becomes a significant issue that needs
attention. approaches for efficient and
online-distributed task offloading. We shall use
analytical modelling for capacity planning of
these resource-constrained devices.In this paper,
we have designed and implemented an NSGA
II-based optimal distributed task offloading
technique that is applied to a single overloaded
fog node and distributes its load over several
nodes. The proposed algorithm minimizes
average loop latency, network use, and energy
consumption by offloading tasks to fog devices
based on duration. In the future, we shall apply
reinforcement learning-based and
multi-agent-based DRL approaches for efficient
and online-distributed task offloading. We shall
use analytical modelling for capacity planning of
these resource-constrained devices.

REFERENCES
[1] M. H. Miraz et al., “Internet of
Nano-Things, Things and Everything: Future
Growth Trends,” Future Internet, vol. 10, no. 8,
pp. 68, DOI: 10.3390/fi10080068, 2018.

[2] A. R. H. Hussein, “Internet of Things
(IOT): Research Challenges and Future
Applications,” (IJACSA) International Journal
of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019.

[3] M. Ghobaei-Arani et al., “Resource
Management Approaches in Fog Computing: a
Comprehensive Review,” J. Grid Comput., vol.
18, no. 1, pp.1-42, 2020.

[4] M. Y. Akhlaqi and Z. B. M. Hanapi,
“Task offloading paradigm in mobile edge
computing-current issues, adopted approaches,
and future directions,” Journal of Network and
Computer Applications, 212, pp. 103568, 2023.

[5] J. V. Morey and S. K. Addya, “Efficient
Task Offloading in IoT-Fog Network,” In
Proceedings of the 24th International Conference
on Distributed Computing and Networking, (pp.
288-289), (January, 2023).

[6] C. F. Liu et al, “Dynamic Task
Offloading and Resource Allocation for
Ultra-Reliable Low Latency Edge Computing,”
IEEE Communication Survey, vol. 20, pp.
416–464, 2020.

[7] C. Fricker et al., “Analysis of an
offloading scheme for data centers in the
framework of fog computing,” ACM Transactions
on Modeling and Performance Evaluation of
Computing Systems (TOMPECS), 1(4), pp. 1-18,
2016.

[8] A. Yousefpour et al., “On reducing IoT
service delay via fog offloading,” IEEE Internet of
things Journal, 5(2), pp. 998-1010, 2018.

[9] M. Aazam et al., “Offloading in fog
computing for IoT: Review, enabling
technologies, and research opportunities,” Future
Generation Computer Systems, 87, pp. 278-289,
2018.

[10] A. M. A. Hamdi et al., “Task offloading
in vehicular fog computing: State-of-the-art and
open issues,” Future Generation Computer
Systems, 133, pp. 201-212, 2022.

[11] J. Xu and S. Ren, “Online learning for
offloading and auto scaling in renewable-powered
mobile edge computing,” In Global
Communications Conference (GLOBECOM), pp.
1-6, IEEE, 2016.

[12] J. Wang et al. “Computation
Offloading in Multi-Access Edge Computing

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 54

Using a Deep Sequential Model Based on
Reinforcement Learning,” IEEE
Communications Magazine, 57(5), pp. 64-69,
2019.

[13] Y. Pan et al., “Latency minimization for
task offloading in hierarchical fog-computing
C-RAN networks,” In ICC 2020-2020 IEEE
International Conference on Communications
(ICC), (pp. 1-6), IEEE, 2020.

[14] C. F. Liu et al., “Dynamic task
offloading and resource allocation for
ultra-reliable low-latency edge computing,”
IEEE Transactions on Communications, Vol. 67,
no. 6, pp. 4132-4150, 2019.

[15] H. Tran-Dang and D. S. Kim, “A survey
on matching theory for distributed computation
offloading in iot-fog-cloud systems: Perspectives
and open issues,” IEEE Access, Vol. 10,
pp.118353-118369, 2022.

[16] Z. Chang et al., “Energy efficient
optimization for computation offloading in fog
computing system,” In GLOBECOM 2017-2017
IEEE Global Communications Conference, (pp.
1-6), IEEE, (December, 2017).

[17] Y. Nan et al., “A dynamic tradeoff data
processing framework for delay-sensitive
applications in cloud of things systems,” Journal
of Parallel and Distributed Computing, 112, pp.
53-66, 2018.

[18] X. Xu et al., “Multi-objective
computation offloading for internet of vehicles in
cloud-edge computing,” Wireless Networks, 26,
pp. 1611-1629, 2020.

[19] M. Adhikari et al., “DPTO: A deadline
and priority-aware task offloading in fog
computing framework leveraging multilevel
feedback queueing,” IEEE Internet of Things
Journal, 7(7), pp. 5773-5782, 2019.

[20] S. Chen et al., “Distributed task
offloading game in multiserver mobile edge
computing networks,” Complexity, pp. 1-14,
2020.

[21] Y. Wang et al., “Latency-optimal
computational offloading strategy for sensitive
tasks in smart homes,” Sensors, 21(7), 2347,
2021.

[22] T. T. Vu et al., “Optimal energy
efficiency with delay constraints for multi-layer
cooperative fog computing networks,” IEEE
Transactions on Communications, 69(6), pp.
3911-3929, 2021.

[23] W. Hou et al., “Multiagent deep
reinforcement learning for task offloading and
resource allocation in cybertwin-based
networks,” IEEE Internet of Things Journal,
8(22), pp. 16256-16268, 2021.

[24] U. M. Malik et al., “Efficient
Matching-Based Parallel Task Offloading in IoT
Networks,” Sensors, 22(18), 6906, 2022.

[25] A. Kishor and C. Chakarbarty, “Task
Offloading in Fog Computing for Using Smart
Ant Colony Optimization,” Wireless Personal
Communications, 127(2), pp.1683-1704, 2022.

[26] W. Shi et al., “Task Offloading
Decision-Making Algorithm for Vehicular Edge
Computing: A Deep-Reinforcement-Learn-
ing-Based Approach,” Sensors, 23(17), pp. 7595,
2023.

[27] H. Tran-Dang, and D. S. Kim, “Dynamic
Collaborative Task Offloading in Fog Computing
Systems,” In Cooperative and Distributed
Intelligent Computation in Fog Computing:
Concepts, Architectures, and Frameworks, Cham:
Springer Nature Switzerland, (pp. 83-100), 2023.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (4), LGURJCSIT 55

