
A Comparative Study of Parallel and Distributed Big Data Programming
Models: Methodologies, Challenges, and Future Directions

Muhammad Wasim1, Fiza Gulzar Hussain1*, Ayesha Nasir 1, M. Usman Ashraf 2

1Department of Computer Science, University of Management and Technology, Lahore (Sialkot Campus),
Pakistan.

2Department of Computer Science, GC Women University, Sialkot, Pakistan.

Email: 21001279011@skt.umt.edu.pk

ABSTRACT:
 According to a survey conducted in 2021, users share about 4 petabytes of data on Facebook
daily. The exponential increase in data (called big data) plays a vital role in machine learning, the
Internet of Things (IoT), and business intelligence applications. Due to the rapid increase in big data,
research in big data programming models gained much interest in the past decade. Today, many
programming paradigms exist to handle big data, and selecting an appropriate model for a project is
critical for its success. This study analyzes big data programming models such as MapReduce, Direct-
ed Acyclic Graph (DAG), Message Passing Interface (MPI), Bulk Synchronous Parallel (BSP), and
SQL. We conduct a comparative study of distributed and parallel big data programming models and
categorize these models into three classes: traditional data processing, graph-based processing, and
query-based processing models. Furthermore, we evaluate these programming models based on their
performance, data processing, storage, fault-tolerant, suitable language, and machine learning
support. We highlight the benchmarks with their characteristics used for big data programming
models. Finally, we discuss the models' challenges and suggest future directions for the research
community.

KEYWORDS: Programming Models, Parallel computing; Distributed computing, Big data, Map
Reduce, Directed Acyclic Graph, Message Passing Interface, Bulk synchronous Parallel, SQL-like

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 48

1. INTRODUCTION
In recent years, the emergence in the domain of
IoT and social media platforms usage is
becoming the source of generating a massive
amount of digital data called big data. Daily,
billions of users access social media platforms
and share information regarding their activities
and interests. Big data refers to the massive
amount of data generated through messages,
audio, and videos [1]. Big Data is a massive data
set that might be unstructured, structured, or
semi-structured. Different sources like sensors,
cell phones, social media, and e-commerce
websites generate big data. The concept of big

data reflects the size of the extensive data. It is
characterized by 3Vs (volume, velocity, variety)
as shown in Figure 1. 1) Volume: alludes to the
gigantic measure of information (Gigabytes,
Terabytes, Petabytes) 2) Velocity: this alludes to
the speed and frequency of the incoming data that
needs to be processed and analyzed. 3) Variety:
indicates data in different formats (e.g., XML,
CSV, PDF, JSON) and types (e.g., text, sound,
pictures, videos) [2][3].
Big Data is becoming dominant because of its
usage in different fields like health care [4-6],
agriculture [7-9], banking [10-12], media
[13-15], entertainment [16-18], and telecom

Wasim et al. LGURJCSIT 2023 ISSN: 2521-0122 (Online)
ISSN: 2519-7991 (Print)

LGU Research Journal of
Computer Science & IT

doi: 10.54692/lgurjcsit.2023.073365

Vol (7): Issue (3), July September 2023

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 49

[19-21] and researchers have proposed different
models to handle different type of big data. Big
data help organizations get better customer
insights and design effective marketing
campaigns. Machine Learning, Deep Learning,
Cloud Computing, and IoT also rely on big data
programming models [22-24]. Processing and
handling large-scale data using traditional
technologies like relational databases is
impossible.

Figure 1: The Three Characteristics of Big
Data

Therefore, researchers have proposed different
programming models such as MapReduce, DAG,
MPI, BSP, and SQL-like paradigms for handling
big data. We categorize the programming models
into three categories: traditional programming
models (MapReduce, DAG, MPI), graph
programming models (BSP, Pregel, Hama), and
query programming models (SQL-Like), as
shown in Figure 2. The overview of these
programming models is presented in the
following sections.

Figure 2: Traditional, Graph based and Query
paradigm for Big Data Programming Models

1.1. MapReduce
 The MapReduce programming model is used
to develop large-scale big-data applications. This
programming model uses two essential functions

map and reduce. The map function splits the input
data into different pieces or tasks and produces
key-value pairs. Reduce function accepts these
input pairs and combines these tasks.
The programming model also provides the facility
of handling faults if any occur without disturbing
the whole mechanism. If there is no response from
the worker node for a specified time, this node is
considered dead, and a master then assigns the
same task to it to recover from faults. Due to disk
processing of data in disk instead of memory,
Hadoop performance is considered slow.

1.2. Directed Acyclic Graph
Directed Cyclic Graph (DAG) is an effective
platform for modeling complex data analysis,
such as blockchain and data mining applications.
DAG is the combination of edges and vertices,
and the vertices could be objects of any kind
connected by edges [23].

1.3. Message Passing Interface
 Message passing interface (MPI) provides
process-to-process communication and exchange
messages by connecting multiple
computers running parallel programs over
distributed shared memory [26]. MPI aims to
provide scalability, portability, and high
performance. In MPI, the sender process sends
information that is to be received by the receiving
process [27]. Although the MPI offers high
scalability and performance, it lacks support for
fault tolerance [28].

1.4. Bulk Synchronous parallel
The Bulk Synchronous Parallel (BSP) model was
introduced in the late 19s [39]. This model
worked in three steps, i.e., super steps, barrier
synchronization, and global computations. The
local computations were performed in each super
step, and the global communication step was used
to take an update from each super step. Barrier
synchronization was used to ensure all processing
was done in super steps. This model performs
efficiently on graph-based applications.

1.5. SQL-like
SQL-like programming models facilitate
developers in writing big data applications in a
distributed and parallel manner. These
programming paradigms are generally considered
the core part of big-data architecture. Moreover,
the knowledge of these platforms helps
developers to select suitable programming models

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 50

according to the nature of the application. For
example, some applications require large-scale
data handling but not in real-time. On the other
hand, some applications demand efficient
machine learning (ML) platforms, and others
require fault tolerance. Similarly, Different
applications need efficient graph processing
mechanisms. Moreover, a developer should
consider a few limitations (fault-tolerant,
real-time) in these programming models before
selecting a model.
We also compare these models in Table 1 based
on parameters, including data flow,
computations, use case, and in-memory caching.
We observe that only DAG is the in-memory big
data model.
We also compare our survey paper with existing
survey papers. D. Wu et al. published a survey on
big data programming models in 2017. The study
describes all big data programming models and
their implementations [29]. They categorized the
programming models into MapReduce,
Functional, SQL-based, Actor, Statistical, Data
flow, BSP, and high-level DSL. They explained
the application of programming models and
compared them based on Features, Abstraction,
Semantics, and computation. The programming
models in the survey were not compared based
on their characteristics, parameters, qualities, and
suitable applications.
L. Belcastro et al. surveyed to compare big data
programming models [23]. They divided the
programming models into four categories: Level
of abstraction, type of parallelism, infrastructure
scale, and application classes. They compare
these programming models based on data
management and exchange, interoperability, and
efficient parallel computations. It helped
developers identify programming models
according to their hardware needs. However,
they did not categorize the programming models
according to data processing techniques.
 Similarly, L. Belcastro et al. conducted a
detailed survey of programming models [30].
This survey explained the features of
programming models along with the code
snippets and real-world applications. They
compared different programming models such as
MapReduce, Spark, Flink, Pregel, and SQL
based on programming features and diffusion and
presented their advantages/disadvantages. Their
study did not cover any benchmarks for
evaluating the performance of these
programming models. Our contribution in this

study is described below:
• We explain different big data programming
models and categorizes them into three categories
(Traditional data processing, graph-based
processing, and query-based processing) based on
data processing.
• We present a detailed study of the evaluation of
these models.
• We also discuss the different benchmarks vital
for different model types.
• We identify the challenges developers face in
the selection of big data programming models.
• We also identify and present the limitations in
programming models to define new research
directions for researchers in the field of big data
programming
• We analyze the usage of big data programming
models based on parameters such as performance,
data processing, storage, fault tolerance, and
machine learning support.
We conducted a detailed literature survey by
studying the papers from 2015-2023. We studied a
total of 84 research papers downloaded from
Google Scholar. We found these research papers
by searching with different keywords related to
Big Data programming models like big data,
parallel computing, distributed computing,
programming models, Apache spark, Apache
Hadoop, Map Reduce, and MPI. The rest of the
paper is organized as follows: section 2 elaborates
on classifying big data programming models into
traditional, graph and query models. The big data
benchmark datasets are describing in section 3.
We discuss the crucial parameters, open problems
and future directions in section 4. Finally, section
5. concludes our study with future directions.

2. LITERATURE REVIEW OF
 BIG DATA PROGRAMMING
 MODELS
We classify the programming models into three
types: Traditional, Graph, and query, as shown in
Figure 2. Different types of models under these
paradigms are explained in this section.

2.1. Traditional Big Data Programming Models
Dean et al. discussed the first programming
model, "map-reduce," for handling big data, and
is proposed by Google [4]. Before this model,
google faced the issue of parallelism, fault
tolerance, and distribution of its computations.
MapReduce programming model solved all these
problems. This programming model was inspired
by Lisp and other functional languages primitives

"map" and "reduce." The MapReduce is simple
but powerful enough to hold up different
data-intensive applications [5]. MapReduce is
used in different domains, including machine
learning, social media, data mining, image
processing, and information retrieval.

Table 1: Comparison Table of Big Data
Programming Models

Apache Hadoop platform is implementing the
MapReduce model that came into existence in
2005 [4]. Yahoo first contributed and adapted
80% of the core of Hadoop [6]. Apache Hadoop
handles large-scale data in a distributed manner
and facilitates programmers by providing
solutions like fault tolerance, load-balancing
scalability, and cost.[7]. Hadoop uses the Hadoop
Distributed File System (HDFS) for storing data.
[8].
P. Natesn et al. proposed a two-stage MapReduce
model using Apache Hadoop [77]. It was called
MapReduce Multivariate linear regression model
(MR-MLR). In the training phase, the mapper
was used to correlate between regression
variables. It reads the data from the HDFS file
structure. The second phase was the
prediction/classification of predictor values by
reading test instances. This framework was
evaluated on four UCI datasets of machine
learning. The experimental results revealed that
MR-MLP was scalable and efficient for big data
applications.V. K. Vavilapalli et al. highlighted
the shortcomings of the Hadoop MapReduce
programming model and explained the new
architecture of Hadoop On-Demand and Apache
YARN [9]. The classical Hadoop MapReduce
model was limited in scalability and strongly
decoupled resource initializer with the

programming model. Hadoop On-Demand (HoD)
overcame these limitations. But resource
allocation information was not adequately
managed by HoD. Apache YARN managed
resources. It consisted of three major components:
Resource Manager, Application Manager, and
Node Manager. The resource manager
communicated with NM for resource availability
and then issued container leases.
 Apache Spark, which implements the DAG
programming model, is used to process data in
RAM instead of disk[10][85-90]. This feature of
DAG, as a result, provides faster computation
than Hadoop. In addition, Spark did not
havSparktorage system, which is Big Data
applications' primary and fundamental
requirement. Spark uses other sources like HDFS
Cloud storage and other NoSQL databases to
overcome this limitation.
The authors in [78] proposed a word count
application using big data. The application was
implemented on Apache Spark 3.1.2 version with
8 GB with 2 cores and a single node. They used
different data sizes for executing them on different
numbers of cores. The experiment was performed
by Running the word count application that
analyses the speed and processing time. The
results showed that the models take less
processing time when increasing the number of
cores.
The big data programming models can also be
used for heavy computational time-consuming
tasks like feature engineering. In [79], the authors
extracted text features from the Wikipedia corpus
to evaluate the RDD and Spark SQL APIS
runtime of the Apache Spark programming
model. The HDFS was used for storing and
retrieving the corpus. More Apache yarn is used
as a resource manager for managing hardware
resources and batch jobs. The results showed that
SparkSQL API performs better in running long
batch jobs by decreasing the runtime from 67% to
80%.
P. Carbone et al. proposed the Apache flink
programming model based on DAG [11]. The
authors explained Flink's architecture and
discussed how it was used for batch and stream
processing. Apache Flink consisted of two APIs:
batch processing Dataset API and stream
processing dataStream API. The Flink process
model had three components: Flink Client, Task
Manager, and Job Manager. Flink client received
the program code and made a dataflow graph
which was passed to the Job manager. Job

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 51

Model Data flow Computation

Map
Reduce

DAG

MPI

BSP

SQL

Map and
R e d u c e
phases

Directed
Graph

Explicit
Point-to-Point
communication

Synchronous
Iterations

Relation
Algebra

Batches

Real- Time

Message passing
between tasks

Iterative and
parallel

Queries

In-memory
 caching

 No

 Yes

 No

 No

 No

Managers created checkpoints for fault tolerance.
Actual processing executed in Task Manager.
Y. Benlachmi et al. compared big data
programming models frameworks Hadoop and
Spark. This paper evaluates the performances of
these two frameworks [12]. These two
implementations are compared regarding
performance scalability, cost, security, and
latency. By analyzing all the facts, the authors
stated that apache spark is better at processing
real-time stream data, but Apache Hadoop is
better when large-scale data are in batch form.
Another reason behind the fast performance of
Spark is in-memory data processing. Hadoop is
less costly than Spark due to the usage of local
disks.
H. M. Makrani et al. presented an empirical
analysis of the memory usage of Spark, Hadoop,
and MPI [13]. It helped in understanding the
overall impact of different memory parameters
on the speed and performance of the big data
frameworks. The memory parameters were
capacity of memory, frequency of memory, and
the number of channels. The results revealed that
Spark and Hadoop don't require a large memory
capacity, but MPI does.
M.Assefi et al. presented a real-world experiment
on Apache Spark MLib [14]. Moreover, they also
compared the performance of the Apache Spark
MLIB platform with the Weka Hadoop version
platform. They used different ML classifiers on
four different datasets.
Another research focused on comparing the
performance of the MPI model with MapReduce
[15]. The authors made three randomly generated
graphs with 1000 to 10,000 nodes. The results
revealed that MPI performed better on iterative
jobs for data-intensive iterative applications and
when the dataset was moderate. On the other
hand, when the dataset is large in scale and tasks
don't require iterative jobs, MapReduce performs
better than MPI.
A. Salzman et al. proposed novelties in the
GFEM method [80]. They implemented a
two-scale solver for local and global problems in
linear elasticity problems using MPI. The authors
developed a specific scheduling policy for local
problems. And reference solution was proposed
for the iterative process. The MPI model
provided distributed memory access and used
specific resolutions at the global level. The
parallel workflow improved the scalability with a
cost of less than 1.3%. I. Chebbi discussed
thearchitecture of Hadoop and Spark in detail

[16]. According to them, the platform of Hadoop
and Spark is fault-tolerant by default. The
platform of Hadoop recovers the lost data from
other data nodes of the cluster through replication.
On the other hand, sparks use its RDD data
structure for recovering lost data. But if we
consider the MPI programming model
fault-tolerant feature, then according to [17]. MPI
isn't fault tolerant by fault, and still, there isn't any
mechanism proposed, yet that makes MPI fault
tolerant.
 S.J. Kang et al. discussed the MPI and
MapReduce parallel programming models [18].
The authors considered two problems first one is
the all-pair-shortest path, and the second is
computation intensive. MPI might be regarded as
the framework when the data size is reasonable,
and the task is computationally heavy.
MapReduce may be a great framework when the
vast data size and the jobs do not need iterative
processing.
A. Mostafaeipour et al. analyzed the performance
of Spark and Hadoop frameworks on the Machine
Learning platform [10]. The model used the Higgs
dataset with 11 million samples in the 28 features.
The experiment was conducted using the KNN
machine learning algorithm. The value of K used
by the authors was 5 on the dataset for both
platforms. The results indicated that for small
datasets, the performance of the Spark increased
by 4.5-5; for large datasets, the performance was
1.4-2 times higher than the Hadoop.
For evaluating the performance of MPI with
Apache Spark, D. S Kumar et al. proposed a
Twitter sentimental analysis on Twitter data[19].
The methodology was to read tweets line by line
and then count positive and negative words. The
dataset used for this experiment was 7GB,
500GB, 100GB, and 1TB. The results revealed
that the execution time of MPI was 2 times greater
than the execution time of Spark.
L.Xia et al. proposed a unified model named
Blaze for handling high energy physics (HEP) big
data [81]. It modified the Spark to add the
message passing facility by OpenMPI. This
model is used in data computer memory for
efficient communication. HEP data was
partitioned and used in parallel. The Spark
computing engine was responsible for task
allocation, and inter-task MPI was implemented.
This model achieved 70% performance
improvement as compared to the traditional Spark
model.
X. Lu et al. experimented by combining the

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 52

features of MPI and Hadoop to reduce delay [20].
The proposed idea worked with the MPI-D
Library built on point-to-point primitives on MPI
for supporting arbitrary operations of
MapReduce. The methodology for adapting MPI
was to use a communication platform for
Hadoop, which was divided into two groups;
first, by comparing Hadoop modules with MPI
primitives to analyze the bandwidth and latency
of these two platforms. Secondly, they
implemented an MPI-D library that worked with
key-value pairs.8 nodes were used to build the
experiment with the MPI-D library. The results
revealed that their proposed prototype reduces
the execution time by 44%.
Another critical issue in combining HPC and Big
data is the difference in their software stacks. The
limitations interoperability between their
programming models and languages is limited.
To deal with this problem, the authors in [82]
proposed a new model called IgnisHPC. This
model was explicitly used for executing HPC and
Big Data workloads. Moreover, IgnisHPC
supports multiple language applications with
Java Virtual Machine and non-Java Virtual
Machine languages, as it relies on the MPI
model. Hence, this framework takes advantage of
network architectures and communication
models. Moreover, the model executes
MPI-based applications efficiently. The results
showed that their model performed 1.1× to 3.9×
faster than the traditional Spark.
M. M. Rathore et al. presented a Real-time and
efficient stream data processing platform for
analyzing big data [21]. The model worked with
distributed and parallel environments of Hadoop
with Apache Spark and GPU. The authors
collected data from sources and then filtered it.
After filtration, the data is transferred to the load
balancing unit, where the controller and data
nodes work together for parallel and distributed
processing. The data nodes are attached with
GPU, HDFS, and Apache Spark. Apache Spark
uses its real-time processing feature and
performs immediate action on data. The results
reveal that the proposed system with GPU
throughput processes 300-350 Mbps frames per
second, whereas the CPU-based map-reduce
framework has a throughput of 50 Mbps.

2.2. Graph Big Data Programming Models
Hadoop was mainly used for processing
traditional data. It could also be used for
processing graphs-based applications. The HADI

algorithm for efficient MapReduce jobs in graphs
was introduced in [22]. Another PEGASUS
library was developed on top of Hadoop for graph
mining tasks [23], but multiple map-reduce jobs
involved can cause overhead and affect efficiency.
S. Sakr Proposed GraphLab project written in
C++ [24]. It was used for graph processing Big
Data with a high-level programming interface. It
was used with both HDFS and POSIX file
systems. It consisted of three main parts: a data
graph, an update function, and a sync operation.
Data graph used for user-modifiable program state
and computational dependencies. Update function
used to operate on data graph and transformed
data in small overlapping contexts. It was used to
represent user computations. Three operations,
gather, apply, and scatter, were used in execution.
G. Malewicz et al. developed another separate
framework for graph processing based on the BSP
model named Pregel [25]. It was based on
distributed computing. The architecture used a
directed graph for input to Pregel computation.
The vertex of this graph defined user-defined
operation, and edges were associated with the
source vertex. After graph initialization, a series
of steps were performed in a sequence of super
steps. After completion of tasks, all vertices vote
to halt, and the process is terminated. An
experiment was performed with a single-source
shortest path on 300 multicore commodity PCs.
800 worker tasks were initiated, and it was
observed that the running time of the graph took
10 minutes.
Z. Tian et al. proposed a BSP model for
agent-based simulations [83]. The authors created
a temporary artificial network for experimenting
with simulation locally. They developed
CloudCity, a distributed engine to improve the
communication and locality in these simulations.
The main area of concern was to improve the
tolerance for distributed systems. To reduce the
communication overhead, the author proposed a
double buffering mechanism. They compared this
framework with Giraph, GraphX, and Apache.
The performance of this model was 100 times
faster than Spark.
U. Kang Proposed a graph-based framework
called GBASE on top of Hadoop [26]. It was
deployed on the Yahoo Hadoop cluster. This
framework comprised two components: The
indexing stage and the query stage. The raw graph
was given as input to the framework. The
indexing stage then clustered it and divided it into
blocks. Then these blocks were compressed and

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 53

stored. GBASE was efficient in storage,
indexing, and scalability.
S. Sakr proposed the Apache Giraph model based
on the BSP model in 2012 [24]. It works in super
steps. All graph processing programs were
expressed as iteration sequences in super steps. It
worked on Master-Slave architecture. The master
node assigns partitions to a vertex which act as
vertices. It used Zookeeper for synchronization.
R.S. Xin introduced the GraphX framework
based on a resilient distributed graph system in
Spark [27]. GraphX produced the resilient
distributed graph (RDG) using RDDs. Two
graph-based algorithms, Pregel and PowerGraph,
were implemented using RDGs. GraphX
interface provided the facility of graph
construction along with graph transformations
and queries.
P. Carbone provided support for graph processing
using Gelly Flink [11]. Gelly is comprised of two
datasets: the vertices and edges dataset. These
dataset properties were used to generate a graph.
K. Siddique et al. proposed a new research
direction in big data by introducing Apache
Hama based on BSP [28]. The authors illustrated
the architecture of Apache Hama in three major
components: BSP master, Zookeeper, and Groom
server. The BSP master was responsible for
assigning tasks to Groom Server. Zookeepers
acted as barrier synchronization. The BSP master
supported the fault-tolerant property.
Siddique et al. worked on Apache Hama and
discussed its architecture, advantages, and
shortcomings[29]. They compared Apache Hama
with other big data programming models,
Apache Yarn, Apache Giraph, MapReduce, and
Apache Spark. Apache Hama's core architecture
was based on a BSP model. Apache Hama was
useful for complex iterative applications and
outperformed MapReduce in this domain.
Apache Spark outperformed Hama in terms of
usability. Hama outperformed MapReduce and
Spark on top k joins on large datasets. Apache
Giraph was not used for real-time processing,
machine learning, and repartitioning. Hama used
traditional graph partitioning techniques.
L.Y. Ho proposed another graph-based model
named Kylin [30]. It was based on BSP but with
three optimization techniques: vertex-weighted
partitioning, pull messaging, and lazy vertex
loading. This model outperformed Apache Hama
up to five times due to efficient optimization
techniques. Z. Wang proposed a new BC-BSP+
model based on BSP [31]. This model provided

efficient and flexible configurations and graph
partitioning techniques. This model used the disk
buffer for managing data. BC-BSP+ provided
simple APIs to users for implementing graph
structures. The experiments were performed by
running the PageRank algorithm. The results
showed that BC-BSP+ outperformed the Hama
and Giraph. The running time of BC-BSP+ was
twice faster than Hama and six times faster than
Giraph.
R. Chen et al. worked on graph processing
frameworks and proposed a new model for graph
processing named Cyclops and CyclopsMT [32].
Cyclops was based on Master-Slave architecture.
The working model was based on Pregel and
Hama's core. In Cyclops, the master used to send
replicas to other necessary nodes. Cyclop's
performance compared to Hama was 2.06X using
the Metis partition algorithm. T. Li et al. proposed
a GraphZ framework for graph processing based
on BSP [33]. It consisted of three components:
master node, server node, and storage node. This
model used the ZHT server. It was tested by
implementing the PageRank algorithm on a
different number of machines. It was considered
best for load balancing and data locality compared
to Hama.
G. Dai et al. proposed a new framework for graph
processing named FGPG [34]. This framework
consisted of processing kernels, block RAMs, and
FGPG chips. On-chip cache mechanism for data
locality in the graph was implemented. The
experiment was performed by implementing
Breadth-First Search (BFS) in Twitter data. The
proposed framework did not achieve
state-of-the-art performance on FGPG.
S. Aridhi et al. proposed a framework BLADYG
for dynamic graph processing [35]. BLADYG
was used to collect online graph data using HDFS,
Database, or Amazon S3. Data can be
stream-based or complete with one graph. Graph
Partitioning techniques were also applied. R.
Dathathri et al. proposed Gluon to improve
communication optimization in existing
frameworks for distributed graph analytics [36].
M. Twenty et al. proposed GraphOpt to improve
the performance of existing frameworks Giraph
and GraphX [37]. Moreover, it was used for three
optimization algorithms. Experiments were
performed on different benchmarks and showed
that performance was increased up to 47.8% using
random search and 5.7% on average.W. Fan et al.
[38] proposed a GraphScope framework for
parallel and distributed graph processing. It

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 54

consisted of data flow runtime for distributed
execution of graph processing. The architecture
also included the graph library to perform
standard graph computations. This framework
can be implemented in cyber security
monitoring, fraud detection, and link prediction.
It was 34.7 times faster on iterative graph queries
as compared to PowerGraph. W. Daluwatta et al.
proposed a CGraph framework for graph
processing [39]. It was based on graph
repartitioning techniques to reduce the overhead.
It improved performance up to 3.9 times
compared to another graph-based Chaos
framework.

2.3. Query Big Data Programming Models
S.Arora et al. emphasized the problem of
MapReduce Hadoop that Java developers were
required to perform any task on this model [40].
The authors explained two new implementations
of the big data programming model SQL. Yahoo
proposed Apache Pig to resolve the issue of a few
available Java developers. They introduced a
new language named Pig Latin, similar to SQL.
Pig Latin was found to replace a hundred lines of
Java code into four lines of Apache Hive
proposed by Facebook and used this model on
top of Hadoop for ease of use. It used an
SQL-like query language called HQL. Apache
Hive architecture comprised three main
components: Hive client, driver, and Hadoop.
The limitation of Apache Hive was latency issues
for hive queries and was not suited for low-level
updates.
V. Garg focused on the problem of using Apache
Hive for big data that increases the execution
time of tasks [41]. The author proposed a
multiple query optimization (MQO) component
to reduce the execution time. A new architecture
of Apache Hive named distributed Hive was
proposed. The user submitted Hive Queries in
this architecture through a web interface or
command line interface. Incoming queries were
suspected and made common global queries.
These global queries were passed to the Driver
component that passed the query to the compiler.
The compiler generated a logical plan that DAG
uses for defining map-reduce tasks. An
experiment was performed to evaluate the
performance of distributed Hive by varying data
sizes and several queries. It was observed that the
execution time of queries with MQO was 50%
reduced compared to conventional Hive

architecture. In [84], the Apache hive model,
MongoDB, and Microsoft SQL server are
analyzed to construct the data warehouse for
online learning platforms. The corpus construc-
tion and descriptive analytics process were
evaluated with the assistance of the above-defined
technologies. The Apache hive was used for
different contexts in handling big data design
principles in constructing data warehouses. Also,
it was implemented on an Azure virtual machine
with the same region and hardware configuration.
Their evaluations showed that the Apache Hive
platform requires less maintenance and performs
faster in contrast to MongoDB and Microsoft
SQL. This is because the scalability mechanism of
Hive's used commodity hardware and the simpli-
fied mechanism of this programming model
favors this decision.
 K. Bansal et al. worked on Apache Pig and
Apache Hive and experimented with massive
datasets to analyze their performance [90-96]. A
dataset was installed on Hadoop, and different
queries were performed to extract data using
Apache Pig and Apache Hive. The authors
explained the architecture of Apache Pig and
Apache Hive. Apache Pig was based on the Pig
Latin language, which provided a high-level
program of Java MapReduce jobs. Apache Hive
was based on an SQL-like language called
HiveQL. A medical dataset of 125,087 records
from the United States was used to experiment.
The authors observed that on increasing dataset
size, Hive was slow in execution as compared to
Pig. Regarding Storage, Hive was more efficient
for data extraction than Pig. For ease of use, Pig
was considered difficult to use because some
knowledge of Java was required. On the other
hand, Hive was easy to use because of the
SQL-like structure. In terms of cost, both Apache
Hive and Apache Pig were cost-effective.

3. BIG DATA BENCHMARKS
Benchmarks are used to compare the performance
of big data programming models. A series of
experiments and tests are performed to evaluate
the programming models. The Benchmark
process comprises five steps:
planning step, generating data, generating data,
developing tests, execution of tests, and evalua-
tion and analysis of results. Some critical
extensive data benchmarks are presented in Table
3 with their characteristics and description.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 55

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 56

Table 2: Summary of Big Data Programming Models, the frameworks based on those models with

their respective pros and cons

Table 3: Big Data Benchmarks for different significant data programming paradigms with their

characteristics

Ref Programming Model Framework Methodology Pros Cons

Traditional Big Data Programming Models

Graph Big Data Programming Models

Query Big Data Programming Models

[6]

[11]

[43]

[25]

[28]

[41]

[40]

[44] YCSB

Grid Mix

TPC

Big Bench

[45]

[46]

[47]

MapReduce

Directed Acyclic
Graph (DAG)

Message Passing I
nterface (MPI)

Bulk synchronous
parallel (BSP)

Bulk synchronous
parallel (BSP)

Hadoop:
MapReduce
implementation

Apache Flink

Open MPI

The model, along with its file
system HDFS takes advantage of
"map" and "reduce" functions for
solving big data problems in a
distributed and parallel manner.
The model processes data in a
stream, batch, and iterative way
with an in-memory computation-
al mode.

Process to process communica-
tion for parallel processing of
data.

Flexibility
Scalability
Fault-Tolerant

R e a l - t i m e
Processing

Fast processing
of Large-scale
data, then
Hadoop and
Spark.

L o w - l e v e l
programming,
Not for iterative
tasks

M e m o r y
Management

Not fault
Tolerant

Pregel Using vertex-centric approach Efficient graph
processing Slow speed

Apache Hama
BSP based three components:
BSP master, Zookeeper,
and Groom server

I m p r o v e d
performance
over Pregel

U n n e c e s s a r y
communication in
graph partition
strategy

SQL

SQL

Distributed
Hive

Apache Pig,
Apache Hive

Add Multiple query optimization
components in Hive

Abstraction over Hadoop using
SQL-based language in Hive
and Pig Latin in Pig

50% improved
performance over
traditional Hive

Easy to use and
implement No storage system

Less speed

Ref Name Description Characteristics

Traditional Big Data Programming Models

No SQL databases

Suitable for Hadoop Clusters

Online Transaction Processing
Workload

The industry benchmark for
big data analytics for Hadoop

Used for comparing two non-relational
databases (Hbase & Cassandra).

Suitable when multiple users perform the
same jobs.
Workloads are implemented using
different Arithmetic operators. De-facto
standard for evaluating DBMS.
It comprises 30 queries and four key
steps: system setup, generating, loading,
and executing data.

4. DISCUSSION
In this section, we discuss the different
challenges of big data programming models. We
evaluate the programming models present in
literature review according to parameters like
in-memory data, batch processing, stream
processing, efficient resource management, and
iterative tasks. We also present a comparative
table (Table 4) of the big data programming
models based on performance, data processing,
storage, fault-tolerant, suitable language, and
machine learning support. Based on our
extensive study, we analyze the challenges
regarding big data programming models and
provide solutions to these challenges.
The most common and widely used MapReduce
programming model has HDFS storage which is
suitable for handling large data sets. This model
mainly uses batch processing to manage the data
effectively. It is able to handle the data if any fault
occurs and is highly resilient. On the other hand,
DAG is proposed to be an effective solution for
real-time applications. It manages data in
streams. MPI is not fault-tolerant, so it is
important to note that this model is less suitable
and might not be ideal for applications that
demand high availability and robustness in case
of node failure and system breakdown.

Graph-based applications like social networks,
network optimization, and maps require iterative
computations. BSP-based models like Apache
Hama, Pregel, GraphLab, and Apache Giraph are
most suitable for graph-based data processing
applications.
The application developer must explicitly design
and implement fault tolerance features, such as
recovery through barriers, in the BSP model
because fault tolerance is a great concern in graph
processing applications. This manual fault
tolerance method in the iterative BSP model
causes data inconsistency and increases complexi-
ty. Alternative programming models like Apache
Spark's GraphX offers automatic fault tolerance,
which can be more advantageous than the manual
implementation of this mechanism. We show
these features in Figure3.

Figure 3: Characteristics based categorization
of Big Data Programming Models

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 57

[48]

[49]

Cloudsuite

Hi-bench

Used for scale-out applications.

Four categories are classified into thirteen
workloads. Perform operations on
real-world applications and synthetic
micro-benchmarks.

For testing the applications running on
cloud platforms, Hadoop and GraphLab.

A shell script set published by Apache
License.

[48] Cloudsuite Used for scale-out applications.
For testing the applications running on
cloud platforms, Hadoop and GraphLab.

[50] Graphalytics Distributed processing framework
Support RDF databases.Used for graph processing models

[51] Pig Mix 17 queries perform different operations.Query evaluation of pig based system

[52] Big Data Bench Perform three basic operations: relational
queries, microbenchmark and essential
data store operation. Generate six seeds
model.

In the real world, synthetic and big data
workloads.

Graph Big Data Programming Models

Query Big Data Programming Models

4.1. Open Problems: Challenges and
 Future Directions

4.1.1. Data Management
Data Management is a challenging task in
programming models for handling big data.
Hadoop uses disk management, which creates
problems when processing data and causes
delays. Therefore, in-memory data management
was introduced in Apache Spark [119-120].
Although in-memory data management
overcomes the problem of inefficient data
retrieval, it also has a limitation in that data size
must be small enough to load in memory or
memory size must be large enough to store all
data.

4.1.2. Processing
There are different ways to process data in big
data programming models. Some programming
models like Hadoop process data in batches,
whereas Spark can process data streams.

4.1.3. Lack of Professional Expertise
Developers also face the challenge of a lack of
professional knowledge and expertise in different
languages to handle big data programming
frameworks [97-112]. Developers with expertise
in query languages find it easy to deal SQL based
models like Apache Pig and Apache Hive.
Similarly, developers with poor knowledge of
Java face problems in writing map-reduce
programs for Apache Hadoop.

4.1.4. Resource Management
Resource management is one of the crucial
challenges in big data programming models.
Managing the resources efficiently when working
in a distributed environment is essential. Apache
Hadoop and other versions of Hadoop, like
Common Hadoop, were poor in resource
utilization.

4.1.5. Graph Management
There was a problem with managing graph big
data. Hadoop is not suitable for graph processing.
Initially, Hadoop was used for graph processing.
However, it was limited to up to two iterations and
increased overhead. A developer must perform
repeated map and reduce functions to perform
iterative tasks in MapReduce [112-114].
This study aimed to find the most suitable
programming model for developers and the
research community. Different parameters and
their associated best programming models
[114-118] are presented in Table 5. We propose
the following future directions:
i. Real-time processing of data should be
implemented for big data applications
ii. For ease of programmers, different
programming languages APIs should be
introduced.
iii. Resources should be distributed in
different clusters for the efficient development of
big data applications
iv. For handling visual modality, different
mechanisms for reducing overhead should be
introduced
v. Apache Spark is a promising solution if
the data is small that fits in memory.
vi. Apache Flink can be considered if the
application requires batch, stream, or iterative
processing.
vii. If the application needs to process
graph-based data, BSP-based models like Apache
Hama, Pregel, GraphLab, and Apache Giraph can
be used.
viii. If the application requires handling big
data in the backend and using query-based
information in front, Apache Hive and Apache Pig
are a clear winners.
ix. MapReduce is easy to use for Java
developers from the language perspective
x. Apache Pig and Apache Hive can be the
best choice for SQL developers

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 58

Table 4: Comparison of big data programming models based on different parameters

Ref
Programming
Model Framework Performance Processing Storage API MLLanguage

Fault-
Tolerant

Traditional Big Data Programming Models

[6] MapReduce Apache
Hadoop

Fast for large
data sizes.

Disk Batch-
processing HDFS Yes No Java Yes

Table 5: Application Requirement Vs. the most
suitable big data programming model

5. CONCLUSION
In this paper, we performed a comprehensive
survey of parallel and distributed big data
programming models along with benchmarks for
different types of classified under three broader

categories: Traditional big data programming
models (MapReduce, message passing interface,
directed acyclic graph), graph-based big data
programming models (Bulk synchronous parallel,
Pregel, Hama), and SQL-Like (Apache hive,
Apache pig, and distributed Hive). We provided a
detailed overview of the frameworks of these
programming models. We identified the
parameters for big data programming models
which can be used to assess the suitability of a
model for a particular application. These
parameters include fault tolerance, scalability,
language, storage, and data processing.
Furthermore, we overviewed the evaluation of
these programming models. The application
needs and the most suitable programming model
was presented. We recommend the Apache Spark
with in-memory storage for real-time data
applications. Developers with basic SQL
expertise should use models like Apache Hive and
Apache pig. We also strongly suggest the
implementation of APIs in other languages for the

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 59

[9] Hadoop Apache
YARN Containers HDFS Yes No Java Yes

Yes

Yes

Yes

I m p r o v e d
per fo rmance
by separating
resources

[12] [10] DAG Apache
spark

In-memory
stream
processing

Cloud,
Amazon s3,
HDFS

Yes No Scala

Fast for
p r o c e s s i n g
real-time short
data

[11] DAG Apache
flink

Stream,
batch and
iterative

Memory-
based Yes No Java and

Scala

I m p r o v e d
per fo rmance
over stream
data

[9]
Message
Passing
Interface

Open
MPI

In-memory
stream
processing

NFS and
HFS No No C++

Fast for
iterative tasks

No[25] BSP Pre-gel BSP
Supersteps

Distributed
and local Yes C++

API Java

I m p r o v e d
per fo rmance
by data on the
same machine

No[40] SQL Apache pig Pig Scripts Database Yes No Pig Latin
Good on all
types of data

No[40] SQL Apache hive Query
Based HDFS Yes No Hive QLData Partition

Graph Big Data Programming Models

Query-based Big Data Programming Models

Parameters

In-Memory Data

Batch Processing

Stream Processing

Iterative Tasks

SQL

Efficient Resource
Management

Apache Spark & Open
MPI

Apache Hadoop

Apache Flink

Bulk Synchronous
Parallel

Apache Hive

Apache YARN

Programming Model

MapReduce model. We suggest using Apache
YARN for efficient resource utilization.
MapReduce model. We suggest using Apache
YARN for efficient resource utilization. In the
future, we also plan to perform experiments on
the benchmarks to evaluate and compare the
performance of these programming models.

REFERENCES
[1] J. E. Grable and A. C. Lyons, “An
Introduction to Big Data,” J. Financ. Serv. Prof.,
vol. 72, no. 5, 2018.

[2] M. Assefi et al., “A Study of Big Data
Analytics using Apache Spark with Python and
Scala,” in International Journal of Parallel,
Emergent and Distributed Systems, vol. 34, no. 6,
pp. 632–652, 2017.

[3] K. Vassakis, E. Petrakis, et al., “Big data
analytics: applications, prospects and
challenges,” in Mobile big data, Springer, pp.
3–20, 2018.

[4] E. Baro, S. Degoul, et al., “Toward a
literature-driven definition of big data in
healthcare,” Biomed Res. Int., vol. 2015, 2015.

[5] D. V. Dimitrov, “Medical internet of
things and big data in healthcare,” Healthc.
Inform. Res., vol. 22, no. 3, pp. 156–163, 2016.

[6] S. Shilo, H. Rossman, et al., “Axes of a
revolution: challenges and promises of big data
in healthcare,” Nat. Med., vol. 26, no. 1, pp.
29–38, 2020.

[7] A. Kamilaris, A. Kartakoullis, et al., “A
review on the practice of big data analysis in
agriculture,” Comput. Electron. Agric., vol. 143,
pp. 23–37, 2017.

[8] K. Bronson and I. Knezevic, “Big Data
in food and agriculture,” Big Data \& Soc., vol. 3,
no. 1, pp. 2053951716648174, 2016.

[9] I. Carbonell, “The ethics of big data in
big agriculture,” Internet Policy Rev., vol. 5, no.
1, 2016.

[10] N. Sun, J. G. Morris, et al., “iCARE: A
framework for big data-based banking customer
analytics,” IBM J. Res. Dev., vol. 58, no. 5/6, pp.
1–4, 2014.

[11] U. Srivastava and S. Gopalkrishnan,
“Impact of big data analytics on banking sector:
Learning for Indian banks,” Procedia Comput.
Sci., vol. 50, pp. 643–652, 2015.

[12] H. Hassani, X. Huang, et al.,
“Digitalisation and big data mining in banking,”
Big Data Cogn. Comput., vol. 2, no. 3, pp. 18,
2018.

[13] M. L. Stone, “Big data for media,” 2014.

[14] D. V Shah, J. N. Cappella, et al., "Big
data, digital media, and computational social
science: Possibilities and perils," Ann. Am. Acad.
Pol. Soc. Sci., vol. 659, no. 1, pp. 6–13, 2015.

[15] A. Oboler, K. Welsh, et al., “The danger
of big data: Social media as computational social
science,” First Monday, 2012.

[16] M. D. Smith and R. Telang, “Streaming,
sharing, stealing: Big data and the future of
entertainment,” Mit Press, 2016.

[17] H. Lippell, “Big data in the media and
entertainment sectors,” in New Horizons for a
Data-Driven Economy, Springer, Cham, pp.
245–259, 2016.

[18] H. W. Kim and M. Lee, “Big data and
entertainment content: Case studies and
prospects,” J. Internet Comput. Serv., vol. 17, no.
2, pp. 109–118, 2016.

[19] H. Zahid, T. Mahmood, et al., “Big data
analytics in telecommunications: literature review
and architecture recommendations,” IEEE/CAA J.
Autom. Sin., vol. 7, no. 1, pp. 18–38, 2019.

[20] H. A. A. Hafez, “Mining Big Data in
telecommunications industry: challenges,
techniques, and revenue opportunity,” Int. J.
Comput. Electr. Autom. Control Inf. Eng, vol. 10,
no. 1, pp. 183–190, 2016.

[21] M. Z. Kastouni and A. A. Lahcen, “Big
data analytics in telecommunications:
Governance, architecture and use cases,” J. King
Saud Univ. Inf. Sci., 2020.

[22] J. Chin, V. Callaghan, et al.,
“Understanding and personalising smart city

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 60

services using machine learning, The
Internet-of-Things and Big Data,” in 2017 IEEE
26th international symposium on industrial
electronics (ISIE), pp. 2050–2055, 2017.

[23] L. Belcastro, F. Marozzo, et al.,
“Programming models and systems for big data
analysis,” Int. J. Parallel, Emergent Distrib.
Syst., vol. 34, no. 6, pp. 632–652, 2019.

[24] D. G. Páez, F. Aparicio, et al., “Big data
and IoT for chronic patients monitoring,” in
International Conference on Ubiquitous
Computing and Ambient Intelligence, pp.
416–423, 2014.

[25] Y. Benlachmi and M. L. Hasnaoui, “Big
data and spark: Comparison with hadoop,” in
2020 Fourth World Conference on Smart Trends
in Systems, Security and Sustainability
(WorldS4), pp. 811–817, 2020.

[26] N. Sultana, M. Rüfenacht, et al.,
“Understanding the use of message passing
interface in exascale proxy applications,”
Concurr. Comput. Pract. Exp., vol. 33, no. 14, p.
e5901, 2021.

[27] F. Nielsen, “Introduction to MPI: the
message passing interface,” in Introduction to
HPC with MPI for Data Science, Springer, pp.
21–62, 2016.

[28] J. M. Abuin, N. Lopes, et al., “Big data
in metagenomics: Apache spark vs MPI,” PLoS
One, vol. 15, no. 10, pp. e0239741, 2020.

[29] D. Wu, S. Sakr, et al., “Big data
programming models,” in Handbook of Big Data
Technologies, Springer, pp. 31–63, 2017.

[30] L. Belcastro, R. Cantini, et al.,
“Programming big data analysis: principles and
solutions,” J. Big Data, vol. 9, no. 1, pp. 1–50,
2022.

[31] J. Dean and S. Ghemawat,
“MapReduce: Simplified data processing on
large clusters,” 2004.

[32] K. Shvachko, H. Kuang, et al., “The
hadoop distributed file system,” in 2010 IEEE
26th symposium on mass storage systems and
technologies (MSST), pp. 1–10, 2010.

[33] B. Jia, T. W. Wlodarczyk, et al.
“Performance considerations of data acquisition
in hadoop system,” in 2010 IEEE Second
International Conference on Cloud Computing
Technology and Science, pp. 545–549, 2010.

[34] J. Nandimath, E. Banerjee, et al., “Big
data analysis using Apache Hadoop,” in 2013
IEEE 14th International Conference on
Information Reuse \& Integration (IRI), pp.
700–703, 2013.

[35] V. K. Vavilapalli, A.C. Murthy, et al.,
“Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, pp. 1–16, 2013.

[36] A. Mostafaeipour, A. J. Rafsanjani and et
al., “Investigating the performance of Hadoop and
Spark platforms on machine learning algorithms,”
J. Supercomput., vol. 77, no. 2, pp. 1273–1300,
2021.

[37] P. Carbone, A. Katsifodimos, et al.,
“Apache flink: Stream and batch processing in a
single engine,” Bull. IEEE Comput. Soc. Tech.
Comm. Data Eng., vol. 36, no. 4, 2015.

[38] H. M. Makrani, S. Rafatirad, et al.,
“Main-memory requirements of big data
applications on commodity server platform,” in
2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing
(CCGRID), pp. 653–660, 2018.

[39] M. Assefi, E. Behravesh, et al., “Big data
machine learning using apache spark MLlib,” in
2017 IEEE international conference on big data
(big data), pp. 3492–3498, 2017.

[40] S. J. Kang, S. Y. Lee, et al.,
“Performance comparison of OpenMP, MPI, and
MapReduce in practical problems,” Adv.
Multimed., vol. 2015, 2015.

[41] I. Chebbi, W. Boulila, et al., “A
comparison of big remote sensing data processing
with Hadoop MapReduce and Spark,” in 2018 4th
International Conference on Advanced
Technologies for Signal and Image Processing
(ATSIP), pp. 1–4, 2018.

[42] Y. Guo, W. Bland, et al., “Fault tolerant
MapReduce-MPI for HPC clusters,” in

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 61

Proceedings of the International Conference for
High Performance Computing, Networking,
Storage and Analysis, pp. 1–12, 2015.

[43] A. C. Sodan, “Message-passing and
shared-data programming models-wish vs.
reality,” in 19th International Symposium on
High Performance Computing Systems and
Applications (HPCS'05), pp. 131–139, 2005.

[44] D. S. Kumar and M. A. Rahman,
“Performance Evaluation of Apache Spark Vs
MPI: A Practical Case Study on Twitter
Sentiment Analysis,” J. Comput. Sci., vol. 13, no.
12, pp. 781–794, 2017.

[45] X. Lu, B. Wang, et al., “Can MPI benefit
Hadoop and MapReduce applications?,” in 2011
40th International Conference on Parallel
Processing Workshops, pp. 371–379, 2011.

[46] M. M. Rathore, H. Son, et al.,
“Real-time big data stream processing using
GPU with spark over hadoop ecosystem,” Int. J.
Parallel Program., vol. 46, no. 3, pp. 630–646,
2018.

[47] U. Kang, C. Tsourakakis, et al., “Hadi:
Fast diameter estimation and mining in massive
graphs with hadoop,” ACM Trasactions Knowl.
Discov. from Data, vol. 5, no. 2, pp. 8, 2008.

[48] U. Kang, C. E. Tsourakakis, et al.,
“Pegasus: A peta-scale graph mining system
implementation and observations,” in 2009 Ninth
IEEE International Conference on Data Mining,
pp. 229–238, 2009.

[49] S. Sakr, “Processing large-scale graph
data: A guide to current technology,” IBM Dev.,
vol. 15, 2013.

[50] G. Malewicz, M. H. Austernet, al.,
“Pregel: a system for large-scale graph
processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on
Management of data, pp. 135–146, 2010.

[51] U. Kang, H. Tong, et al., “Gbase: a
scalable and general graph management system,”
in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge
discovery and data mining, pp. 1091–1099, 2011.

[52] R. S. Xin, J. E. Gonzalez, et al.,
“Graphx: A resilient distributed graph system on
spark,” in First international workshop on graph
data management experiences and systems, pp.
1–6, 2013.

[53] K. Siddique, Z. Akhtar, et al.,
“Investigating Apache Hama: a bulk synchronous
parallel computing framework,” J. Supercomput.,
vol. 73, no. 9, pp. 4190–4205, 2017.

[54] K. Siddique, Z. Akhtar, et al., “Apache
Hama: An emerging bulk synchronous parallel
computing framework for big data applications,”
IEEE Access, vol. 4, pp. 8879–8887, 2016.

[55] L.Y. Ho, T.H. Li, et al., “Kylin: An
efficient and scalable graph data processing
system,” in 2013 IEEE International Conference
on Big Data, pp. 193–198, 2013.

[56] Z. Wang, Y. Bao, et al., “A BSP-based
parallel iterative processing system with multiple
partition strategies for big graphs,” in 2013 IEEE
International Congress on Big Data, pp. 173–180,
2013.

[57] R. Chen, X. Ding, et al., “Computation
and communication efficient graph processing
with distributed immutable view,” in Proceedings
of the 23rd international symposium on
High-performance parallel and distributed
computing, pp. 215–226, 2014.

[58] T. Li, C. Ma, et al., “Graph/z: A
key-value store based scalable graph processing
system,” in 2015 IEEE International Conference
on Cluster Computing, pp. 516–517, 2015.

[59] G. Dai, Y. Chi, et al., “FPGP: Graph
processing framework on FPGA a case study of
breadth-first search,” in Proceedings of the 2016
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 105–110,
2016.

[60] S. Aridhi, A. Montresor, et al.,
“BLADYG: A graph processing framework for
large dynamic graphs,” Big data Res., vol. 9, pp.
9–17, 2017.

[61] R. Dathathri, G. Gill, et al., “Gluon: A
communication-optimizing substrate for

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 62

distributed heterogeneous graph analytics,” in
Proceedings of the 39th ACM SIGPLAN
conference on programming language design
and implementation, pp. 752–768, 2018.

[62] M. Twaty, A. Ghrab, et al., “GraphOpt:
a Framework for Automatic Parameters Tuning
of Graph Processing Frameworks,” in 2019 IEEE
International Conference on Big Data (Big
Data), pp. 3744–3753, 2019.

[63] W. Fan, et al., "GraphScope: a unified
engine for big graph processing," Proc. VLDB
Endow., vol. 14, no. 12, pp. 2879–2892, 2021.

[64] W. Daluwatta, R. D. Silva, et al.,
“CGraph: Graph Based Extensible Predictive
Domain Threat Intelligence Platform,” arXiv
Prepr. arXiv2202.07883, 2022.

[65] S. Arora, A. Verma, et al., “An
Overview of Apache Pig and Apache Hive,” Int.
J. Sci. Res. Comput. Sci. Eng. Inf. Technol., pp.
432–436, 2019.

[66] V. Garg, “Optimization of multiple
queries for big data with apache Hadoop/Hive,”
in 2015 International Conference on
Computational Intelligence and Communication
Networks (CICN), pp. 938–941, 2015.

[67] K. Bansal, P. Chawla, et al., “Analyzing
performance of Apache Pig and Apache hive
with hadoop,” in Engineering Vibration,
Communication and Information Processing,
Springer, pp. 41–51, 2019.

[68] B. F. Cooper, A. Silberstein, et al.,
“Benchmarking cloud serving systems with
YCSB,” in Proceedings of the 1st ACM
symposium on Cloud computing, pp. 143–154,
2010.

[69] T. Ivanov, T. Rabl, et al., “Big data
benchmark compendium,” in Technology
Conference on Performance Evaluation and
Benchmarking, pp. 135–155, 2015.

[70] R. Nambiar, M. Poess, et al., “TPC
benchmark roadmap 2012,” in Technology
Conference on Performance Evaluation and
Benchmarking, pp. 1–20, 2012.

[71] A. Ghazal, T. Rabl, et al., “Bigbench:

Towards an industry standard benchmark for big
data analytics,” in Proceedings of the 2013 ACM
SIGMOD international conference on
management of data, pp. 1197–1208, 2013.

[72] R. Han, X. Lu, et al., “On big data
benchmarking,” in Workshop on Big Data
Benchmarks, Performance Optimization, and
Emerging Hardware, pp. 3–18, 2014.

[73] S. Huang, J. Huang, et al., “Hibench: A
representative and comprehensive hadoop
benchmark suite,” in Proc. ICDE Workshops, pp.
41–51, 2010.

[74] M. Capotua, T. Hegeman, et al.,
“Graphalytics: A big data benchmark for
graph-processing platforms,” in Proceedings of
the GRADES'15, pp. 1–6, 2015.

[75] K. Ouaknine, M. Carey, et al., “The
PigMix benchmark on Pig, MapReduce, and
HPCC systems,” in 2015 IEEE International
Congress on Big Data, pp. 643–648, 2015.

[76] L. Wang, J. Zhan, et al., “Bigdatabench:
A big data benchmark suite from internet
services,” in 2014 IEEE 20th international
symposium on high performance computer
architecture (HPCA), pp. 488–499, 2014.

[77] P. Natesan, V. E. Sathishkumar, et al., ‘‘A
distributed framework for predictive analytics
using big data and MapReduce Parallel Program-
ming,’’ Mathematical Problems in Engineering,
pp. 1–10. doi:10.1155/2023/6048891, 2023.

[78] K. Subha and N. Bharathi, “Apache
Spark based analysis on word count application in
Big Data,” 2022 2nd International Conference on
Innovative Practices in Technology and
Management (ICIPTM), vol. 2, pp. 491–495,
2022.

[79] A. Esmaeilzadeh, M. Heidari, et al.,
“Efficient large scale nlp feature engineering with
apache spark,” 2022 IEEE 12th Annual
Computing and Communication Workshop and
Conference (CCWC), pp. 274–280, 2022.

[80] A. Salzman and N. Moës, “A two-scale
solver for linear elasticity problems in the context
of parallel message passing," Comput. Methods
Appl. Mech. Eng., vol. 407, p. 115914, 2023.

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 63

[81] L. Xia, W. Sun, et al., “Blaze: A High
performance Big Data Computing System for
High Energy Physics,” Journal of Physics:
Conference Series, vol. 2438, no. 1, pp. 12012,
2023.

[82] C. Piñeiro and J. C. Pichel, “A unified
framework to improve the interoperability
between HPC and Big Data languages and
programming models,” Futur. Gener. Comput.
Syst., vol. 134, pp. 123–139, 2022.

[83] Z. Tian, P. Lindner, et al., “Generalizing
Bulk-Synchronous Parallel Processing for Data
Science: From Data to Threads and Agent-Based
Simulations,” Proc. ACM Manag. Data, vol. 1,
no. 2, pp. 1–28, 2023.

[84] A. Rudniy, “Data Warehouse Design for
Big Data in Academia,” Comput. Mater. \&
Contin., vol. 71, no. 1, 2022.

[85] Bukhsh, Madiha, et al., “An
Interpretation of Long Short-Term Memory
Recurrent Neural Network for Approximating
Roots of Polynomials,” IEEE Access 10, pp.
28194-28205, 2022.

[86] H. Tufail, M. U. Ashraf, et al., “The
Effect of Fake Reviews on e-Commerce During
and After Covid-19 Pandemic: SKL-Based Fake
Reviews Detection,” IEEE Access 10 , pp.
25555-25564, 2022.

[87] M. Mumtaz, N. Ahmad, et al.,
“Modeling Iteration’s Perspectives in Software
Engineering,” IEEE Access 10, pp. 19333-19347,
2022.

[88] M. Asif, J. K. K. Asamoah, et al., “A
Novel Image Encryption Technique Based on
Cyclic Codes over Galois Field,” Computational
Intelligence and Neuroscience 2022 , 2022.

[89] S. Mehak, M. U. Ashraf, et al.,
“Automated Grading of Breast Cancer
Histopathology Images Using Multilayered
Autoencoder.” CMC-COMPUTERS
MATERIALS & CONTINUA 71.2 : 3407-3423,
2022.

[90] M. R. Naqvi, M. W. Iqbal, et al.,
“Ontology Driven Testing Strategies for IoT
Applications,” CMC-Computers, Materials &

Continua., 70(3), pp. 5855-69, (1 Jan. 2022).

[91] S. Tariq, N. Ahmad, et al., “Measuring
the Impact of Scope Changes on Project Plan
Using EVM,” vol. 8, 2020.

[92] M. Asif, S. Mairaj, et al., “A Novel
Image Encryption Technique Based on Mobius
Transformation,” Computational Intelligence and
Neuroscience, (17 Dec. 2021).

[93] M. U. Ashraf, “A Survey on Data
Security in Cloud Computing Using Blockchain:
Challenges, Existing-State-Of-The-Art Methods,
And Future Directions,” Lahore Garrison
University Research Journal of Computer Science
and Information Technology,Vol. 5, no. 3, pp.
15-30, 2021.

[94] M. U. Ashraf, M. Rehman, et al., “A
Survey on Emotion Detection from Text in Social
Media Platforms,” Lahore Garrison University
Research Journal of Computer Science and
Information Technology; 5(2), pp. 48-61, (21 Jun.
2021).

[95] K. Shinan, K. Alsubhi, et al., “Machine
learning-based botnet detection in
software-defined network: a systematic review,”
Symmetry, 13.5 , pp. 866, 2021.

[96] A. Hannan, F. Hussain, et al., “A
decentralized hybrid computing consumer
authentication framework for a reliable drone
delivery as a service,” Plos one, 16.4 , e0250737,
2021.

[97] S. Fayyaz, M. K. Sattar, et al., “Solution
of combined economic emission dispatch
problem using improved and chaotic
population-based polar bear optimization
algorithm,” IEEE Access, 9, pp. 56152-56167,
2021.

[98] I. Hirra, M. Ahmad, et al., “Breast cancer
classification from histopathological images using
patch-based deep learning modeling,” IEEE, 9,
pp. 24273-87, (Access. 2 Feb. 2021).

[99] M. U. Ashraf, F. A. Eassa, et al.,
“AAP4All: An Adaptive Auto Parallelization of
Serial Code for HPC Systems,” INTELLIGENT
AUTOMATION AND SOFT COMPUTING,
30(2), pp. 615-39, (1 Jan. 2021).

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 64

[100] T. Hafeez, S. M. U. Saeed, et al., “EEG
in game user analysis: A framework for expertise
classification during gameplay,” Plos one, 16(6),
e0246913, (18 Jun. 2021) .

[101] N. Siddiqui, F. Yousaf, et al., “A highly
nonlinear substitution-box (S-box) design using
action of modular group on a projective line over
a finite field,” Plos one,15(11), e0241890, (12
Nov. 2020).

[102] M. U. Ashraf, A. Hannan, et al.,
“Detection and tracking contagion using
IoT-edge technologies: Confronting COVID-19
pandemic,” 2020 international conference on
electrical, communication, and computer
engineering (ICECCE), IEEE, 2020.

[103] K. Alsubhi, Z. Imtiaz, et al., “MEACC:
an energy-efficient framework for smart devices
using cloud computing systems,” Frontiers of
Information Technology & Electronic
Engineering, 21.6, pp. 917-930, 2020.

[104] S. Riaz, M. U. Ashraf, et al., “A
Comparative Study of Big Data Tools and
Deployment PIatforms,” In 2020 International
Conference on Engineering and Emerging
Technologies (ICEET), (pp. 1-6), IEEE, (22 Feb.
2020).

[105] M. U. Ashraf , F. A. Eassa, et al.,
“Empirical investigation: performance and
power-consumption based dual-level model for
exascale computing systems,” IET Software,
14(4), pp. 319-27, (27 Jul. 2020).

[106] M. U. Ashraf, K. M. Jamb, et al., “IDP:
A Privacy Provisioning Framework for TIP
Attributes in Trusted Third Party-based
Location-based Services Systems,” International

Journal of Advanced Computer Science and
Applications (IJACSA), 11.7, pp. 604-617, 2020.

[107] A. Manzoor, W. Ahmad, et al., “Inferring
Emotion Tags from Object Images Using
Convolutional Neural Network,” Applied
Sciences, 10.15, pp. 5333, 2020.

[108] K. Alsubhi, F Alsolami, et al., “A Tool
for Translating sequential source code to parallel
code written in C++ and OpenACC,” 2019
IEEE/ACS 16th International Conference on
Computer Systems and Applications (AICCSA),
IEEE, 2019.

[109] M. U. Ashraf, M. Naeem, et al., “H2E: A
Privacy Provisioning Framework for
Collaborative Filtering Recommender System,”
International Journal of Modern Education and
Computer Science, 11(9),pp. 1, (1 Sep. 2019).

[110] M. U. Ashraf, I. Ilyas, et al., “A
Roadmap: Towards Security Challenges,
Prevention Mechanisms for Fog Computing,” In
2019 International Conference on Electrical,
Communication, and Computer Engineering
(ICECCE), (pp. 1-9), IEEE, (24 Jul. 2019).

[111] M. U. Ashraf, R. Qayyum, et al.,
“State-of-the-art Challenges: Privacy
Provisioning in TPP Location Based Services
Systems,” International Journal of Advanced
Research in Computer Science (IJARCS), 10(2),
pp. 68-75, (20 Apr. 2019).

[112] M. U. Ashraf, A. Arshad, et al.,
“Improving Performance In Hpc System Under
Power Consumptions Limitations,” International
Journal of Advanced Research in Computer
Science, 10(2), (Mar. 2019).

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 65

[113] Javed, Rushba, et al. "Prediction and
monitoring ents using weblogs for improved
disaster recovery in cloud." Int. J. Inf. Technol.
Comput. Sci.(IJITCS) 11.4 : 9-17, 2019.

[114] Ali, Muhammad, et al. "Prediction of
Churning Behavior of Customers in Telecom
Sector Using Supervised Learning Techniques."
2018 International Conference on Computer,
Control, Electrical, and Electronics Engineering
(ICCCEEE). IEEE, 2018.

[115] M. U. Ashraf, F. A. Eassa and et al.
Performance and power efficient massive parallel
computational model for HPC heterogeneous
exascale systems. IEEE Access. 2018 Apr
9;6:23095-107.

[116] M. U. Ashraf, F. A. Eassa and et al.
Toward exascale computing systems: An energy
efficient massive parallel computational model.
International Journal of Advanced Computer
Science and Applications. 9(2). (Jan. 2018).

[117] M. U. Ashraf, S. Arif and et al.
Provisioning quality of service for multimedia
applications in cloud computing. Int. J. Inf.
Technol. Comput. Sci.(IJITCS).10(5):40-7. 2018.

[118] M. U. Ashraf, F. A. Eassa and et al.
Efficient Execution of Smart City’s Assets
Through a Massive Parallel Computational
Model. InInternational Conference on Smart
Cities, Infrastructure, Technologies and
Applications, (pp. 44-51). Springer, Cham. (27
Nov. 2017).

[119] Alrahhal, M. Shady, et al. "AES-route
server model for location based services in road
networks." International Journal Of Advanced
Computer Science And Applications 8.8 :
361-368. 2017.

[120] M. U. Ashraf, F. A. Eassa and et al. High
performance 2-D Laplace equation solver through
massive hybrid parallelism. In 8th International
Conference on Information Technology (ICIT),
(pp. 594-598). IEEE. (17 May. 2017).

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT 66

