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ABSTRACT: 
 According to a survey conducted in 2021, users share about 4 petabytes of data on Facebook 
daily. The exponential increase in data (called big data) plays a vital role in machine learning, the 
Internet of Things (IoT), and business intelligence applications. Due to the rapid increase in big data, 
research in big data programming models gained much interest in the past decade. Today, many 
programming paradigms exist to handle big data, and selecting an appropriate model for a project is 
critical for its success. This study analyzes big data programming models such as MapReduce, Direct-
ed Acyclic Graph (DAG), Message Passing Interface (MPI), Bulk Synchronous Parallel (BSP), and 
SQL. We conduct a comparative study of distributed and parallel big data programming models and 
categorize these models into three classes: traditional data processing, graph-based processing, and 
query-based processing models. Furthermore, we evaluate these programming models based on their 
performance, data processing, storage, fault-tolerant, suitable language, and machine learning 
support. We highlight the benchmarks with their characteristics used for big data programming 
models. Finally, we discuss the models' challenges and suggest future directions for the research 
community.

KEYWORDS: Programming Models, Parallel computing; Distributed computing, Big data,  Map 
Reduce, Directed Acyclic Graph, Message Passing Interface, Bulk synchronous Parallel, SQL-like
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1. INTRODUCTION
In recent years, the emergence in the domain of 
IoT and social media platforms usage is 
becoming the source of generating a massive 
amount of digital data called big data. Daily, 
billions of users access social media platforms 
and share information regarding their activities 
and interests. Big data refers to the massive 
amount of data generated through messages, 
audio, and videos [1]. Big Data is a massive data 
set that might be unstructured, structured, or 
semi-structured. Different sources like sensors, 
cell phones, social media, and e-commerce 
websites generate big data. The concept of big 

data reflects the size of the extensive data. It is 
characterized by 3Vs (volume, velocity, variety) 
as shown in Figure 1. 1) Volume: alludes to the 
gigantic measure of information (Gigabytes, 
Terabytes, Petabytes) 2) Velocity: this alludes to 
the speed and frequency of the incoming data that 
needs to be processed and analyzed. 3) Variety:  
indicates data in different formats (e.g., XML, 
CSV, PDF, JSON) and types (e.g., text, sound, 
pictures, videos) [2][3]. 
Big Data is becoming dominant because of its 
usage in different fields like health care [4-6], 
agriculture [7-9], banking [10-12], media 
[13-15], entertainment [16-18], and telecom 
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[19-21] and researchers have proposed different 
models to handle different type of big data. Big 
data help organizations get better customer 
insights and design effective marketing 
campaigns. Machine Learning, Deep Learning, 
Cloud Computing, and IoT also rely on big data 
programming models [22-24]. Processing and 
handling large-scale data using traditional 
technologies like relational databases is 
impossible. 

Figure 1: The Three Characteristics of Big 
Data

Therefore, researchers have proposed different 
programming models such as MapReduce, DAG, 
MPI, BSP, and SQL-like paradigms for handling 
big data. We categorize the programming models 
into three categories: traditional programming 
models (MapReduce, DAG, MPI), graph 
programming models (BSP, Pregel, Hama), and 
query programming models (SQL-Like), as 
shown in Figure 2. The overview of these 
programming models is presented in the 
following sections.

Figure 2: Traditional, Graph based and Query 
paradigm for Big Data Programming Models

1.1.  MapReduce
     The MapReduce programming model is used 
to develop large-scale big-data applications. This 
programming model uses two essential functions 

map and reduce. The map function splits the input 
data into different pieces or tasks and produces 
key-value pairs. Reduce function accepts these 
input pairs and combines these tasks.
The programming model also provides the facility 
of handling faults if any occur without disturbing 
the whole mechanism. If there is no response from 
the worker node for a specified time, this node is 
considered dead, and a master then assigns the 
same task to it to recover from faults. Due to disk 
processing of data in disk instead of memory, 
Hadoop performance is considered slow. 

1.2.  Directed Acyclic Graph
Directed Cyclic Graph (DAG) is an effective 
platform for modeling complex data analysis, 
such as blockchain and data mining applications. 
DAG is the combination of edges and vertices, 
and the vertices could be objects of any kind 
connected by edges [23].

1.3. Message Passing Interface
 Message passing interface (MPI) provides 
process-to-process communication and exchange 
messages by connecting multiple 
computers running parallel programs over 
distributed shared memory [26]. MPI aims to 
provide scalability, portability, and high 
performance. In MPI, the sender process sends 
information that is to be received by the receiving 
process [27]. Although the MPI offers high 
scalability and performance, it lacks support for 
fault tolerance [28].

1.4. Bulk Synchronous parallel
The Bulk Synchronous Parallel (BSP) model was 
introduced in the late 19s [39]. This model 
worked in three steps, i.e., super steps, barrier 
synchronization, and global computations. The 
local computations were performed in each super 
step, and the global communication step was used 
to take an update from each super step. Barrier 
synchronization was used to ensure all processing 
was done in super steps. This model performs 
efficiently on graph-based applications.       

1.5. SQL-like
SQL-like programming models facilitate 
developers in writing big data applications in a 
distributed and parallel manner. These 
programming paradigms are generally considered 
the core part of big-data architecture. Moreover, 
the knowledge of these platforms helps 
developers to select suitable programming models              
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according to the nature of the application. For 
example, some applications require large-scale 
data handling but not in real-time. On the other 
hand, some applications demand efficient 
machine learning (ML) platforms, and others 
require fault tolerance. Similarly, Different 
applications need efficient graph processing 
mechanisms. Moreover, a developer should 
consider a few limitations (fault-tolerant, 
real-time) in these programming models before 
selecting a model.                                                                                                                                                        
We also compare these models in Table 1 based 
on parameters, including data flow, 
computations, use case, and in-memory caching. 
We observe that only DAG is the in-memory big 
data model.
We also compare our survey paper with existing 
survey papers. D. Wu et al. published a survey on 
big data programming models in 2017. The study 
describes all big data programming models and 
their implementations [29]. They categorized the 
programming models into MapReduce, 
Functional, SQL-based, Actor, Statistical, Data 
flow, BSP, and high-level DSL. They explained 
the application of programming models and 
compared them based on Features, Abstraction, 
Semantics, and computation. The programming 
models in the survey were not compared based 
on their characteristics, parameters, qualities, and 
suitable applications.
L. Belcastro et al. surveyed to compare big data 
programming models [23]. They divided the 
programming models into four categories: Level 
of abstraction, type of parallelism, infrastructure 
scale, and application classes. They compare 
these programming models based on data 
management and exchange, interoperability, and 
efficient parallel computations. It helped 
developers identify programming models 
according to their hardware needs. However, 
they did not categorize the programming models 
according to data processing techniques. 
    Similarly, L. Belcastro et al. conducted a 
detailed survey of programming models [30]. 
This survey explained the features of 
programming models along with the code 
snippets and real-world applications. They 
compared different programming models such as 
MapReduce, Spark, Flink, Pregel, and SQL 
based on programming features and diffusion and 
presented their advantages/disadvantages. Their 
study did not cover any benchmarks for 
evaluating the performance of these 
programming models. Our contribution in this 

study is described below:
•   We explain different big data programming 
models and categorizes them into three categories 
(Traditional data processing, graph-based 
processing, and query-based processing) based on 
data processing. 
•    We present a detailed study of the evaluation of 
these models. 
•   We also discuss the different benchmarks vital 
for different model types.
•   We identify the challenges developers face in 
the selection of big data programming models.
•   We also identify and present the limitations in 
programming models to define new research 
directions for researchers in the field of big data 
programming
•    We analyze the usage of big data programming 
models based on parameters such as performance, 
data processing, storage, fault tolerance, and 
machine learning support.
We conducted a detailed literature survey by 
studying the papers from 2015-2023. We studied a 
total of 84 research papers downloaded from 
Google Scholar. We found these research papers 
by searching with different keywords related to 
Big Data programming models like big data, 
parallel computing, distributed computing, 
programming models, Apache spark, Apache 
Hadoop, Map Reduce, and MPI. The rest of the 
paper is organized as follows: section 2 elaborates 
on classifying big data programming models into 
traditional, graph and query models. The big data 
benchmark datasets are describing in section 3. 
We discuss the crucial parameters, open problems 
and future directions in section 4. Finally, section 
5. concludes our study with future directions.

2. LITERATURE REVIEW OF  
 BIG DATA PROGRAMMING  
 MODELS
We classify the programming models into three 
types: Traditional, Graph, and query, as shown in 
Figure 2. Different types of models under these 
paradigms are explained in this section. 

2.1.  Traditional Big Data Programming Models
Dean et al. discussed the first programming 
model, "map-reduce," for handling big data, and 
is proposed by Google [4]. Before this model, 
google faced the issue of parallelism, fault 
tolerance, and distribution of its computations. 
MapReduce programming model solved all these 
problems. This programming model was inspired 
by Lisp and other functional languages primitives 



"map" and "reduce."    The MapReduce is simple 
but powerful enough to hold up different 
data-intensive applications [5]. MapReduce is 
used in different domains, including machine 
learning, social media, data mining, image 
processing, and information retrieval. 

Table 1:  Comparison   Table of Big Data 
Programming Models

Apache Hadoop platform is implementing the 
MapReduce model that came into existence in 
2005 [4]. Yahoo first contributed and adapted 
80% of the core of Hadoop [6]. Apache Hadoop 
handles large-scale data in a distributed manner 
and facilitates programmers by providing 
solutions like fault tolerance, load-balancing 
scalability, and cost.[7]. Hadoop uses the Hadoop 
Distributed File System (HDFS) for storing data. 
[8]. 
P. Natesn et al. proposed a two-stage MapReduce 
model using Apache Hadoop [77]. It was called 
MapReduce Multivariate linear regression model 
(MR-MLR). In the training phase, the mapper 
was used to correlate between regression 
variables. It reads the data from the HDFS file 
structure. The second phase was the 
prediction/classification of predictor values by 
reading test instances. This framework was 
evaluated on four UCI datasets of machine 
learning. The experimental results revealed that 
MR-MLP was scalable and efficient for big data 
applications.V. K. Vavilapalli et al. highlighted 
the shortcomings of the Hadoop MapReduce 
programming model and explained the new 
architecture of Hadoop On-Demand and Apache 
YARN [9]. The classical Hadoop MapReduce 
model was limited in scalability and strongly 
decoupled resource initializer with the 

programming model. Hadoop On-Demand (HoD) 
overcame these limitations. But resource 
allocation information was not adequately 
managed by HoD. Apache YARN managed 
resources. It consisted of three major components: 
Resource Manager, Application Manager, and 
Node Manager. The resource manager 
communicated with NM for resource availability 
and then issued container leases.
     Apache Spark, which implements the DAG 
programming model, is used to process data in 
RAM instead of disk[10][85-90]. This feature of 
DAG, as a result, provides faster computation 
than Hadoop. In addition, Spark did not 
havSparktorage system, which is Big Data 
applications' primary and fundamental 
requirement. Spark uses other sources like HDFS 
Cloud storage and other NoSQL databases to 
overcome this limitation. 
The authors in [78] proposed a word count 
application using big data. The application was 
implemented on Apache Spark 3.1.2 version with 
8 GB with 2 cores and a single node. They used 
different data sizes for executing them on different 
numbers of cores. The experiment was performed 
by Running the word count application that 
analyses the speed and processing time. The 
results showed that the models take less 
processing time when increasing the number of 
cores. 
The big data programming models can also be 
used for heavy computational time-consuming 
tasks like feature engineering. In [79], the authors 
extracted text features from the Wikipedia corpus 
to evaluate the RDD and Spark SQL APIS 
runtime of the Apache Spark programming 
model. The HDFS was used for storing and 
retrieving the corpus. More Apache yarn is used 
as a resource manager for managing hardware 
resources and batch jobs. The results showed that 
SparkSQL API performs better in running long 
batch jobs by decreasing the runtime from 67% to 
80%. 
P. Carbone et al. proposed the Apache flink 
programming model based on DAG [11]. The 
authors explained Flink's architecture and 
discussed how it was used for batch and stream 
processing. Apache Flink consisted of two APIs: 
batch processing Dataset API and stream 
processing dataStream API. The Flink process 
model had three components: Flink Client, Task 
Manager, and Job Manager. Flink client received 
the program code and made a dataflow graph 
which was passed to the Job manager. Job 
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Managers created checkpoints for fault tolerance. 
Actual processing executed in Task Manager. 
Y. Benlachmi et al. compared big data 
programming models frameworks Hadoop and 
Spark. This paper evaluates the performances of 
these two frameworks [12]. These two 
implementations are compared regarding 
performance scalability, cost, security, and 
latency. By analyzing all the facts, the authors 
stated that apache spark is better at processing 
real-time stream data, but Apache Hadoop is 
better when large-scale data are in batch form. 
Another reason behind the fast performance of 
Spark is in-memory data processing. Hadoop is 
less costly than Spark due to the usage of local 
disks. 
H. M. Makrani et al. presented an empirical 
analysis of the memory usage of Spark, Hadoop, 
and MPI [13]. It helped in understanding the 
overall impact of different memory parameters 
on the speed and performance of the big data 
frameworks. The memory parameters were 
capacity of memory, frequency of memory, and 
the number of channels. The results revealed that 
Spark and Hadoop don't require a large memory 
capacity, but MPI does.
M.Assefi et al. presented a real-world experiment 
on Apache Spark MLib [14]. Moreover, they also 
compared the performance of the Apache Spark 
MLIB platform with the Weka Hadoop version 
platform. They used different ML classifiers on 
four different datasets.
Another research focused on comparing the 
performance of the MPI model with MapReduce 
[15]. The authors made three randomly generated 
graphs with 1000 to 10,000 nodes. The results 
revealed that MPI performed better on iterative 
jobs for data-intensive iterative applications and 
when the dataset was moderate. On the other 
hand, when the dataset is large in scale and tasks 
don't require iterative jobs, MapReduce performs 
better than MPI. 
A. Salzman et al. proposed novelties in the 
GFEM method [80]. They implemented a 
two-scale solver for local and global problems in 
linear elasticity problems using MPI. The authors 
developed a specific scheduling policy for local 
problems. And reference solution was proposed 
for the iterative process. The MPI model 
provided distributed memory access and used 
specific resolutions at the global level. The 
parallel workflow improved the scalability with a 
cost of less than 1.3%. I. Chebbi discussed 
thearchitecture of Hadoop and Spark in detail

 

[16]. According to them, the platform of Hadoop 
and Spark is fault-tolerant by default. The 
platform of Hadoop recovers the lost data from 
other data nodes of the cluster through replication. 
On the other hand, sparks use its RDD data 
structure for recovering lost data. But if we 
consider the MPI programming model 
fault-tolerant feature, then according to [17]. MPI 
isn't fault tolerant by fault, and still, there isn't any 
mechanism proposed, yet that makes MPI fault 
tolerant.
  S.J. Kang et al. discussed the  MPI and 
MapReduce parallel programming models [18]. 
The authors considered two problems first one is 
the all-pair-shortest path, and the second is 
computation intensive. MPI might be regarded as 
the framework when the data size is reasonable, 
and the task is computationally heavy. 
MapReduce may be a great framework when the 
vast data size and the jobs do not need iterative 
processing.
A. Mostafaeipour et al. analyzed the performance 
of Spark and Hadoop frameworks on the Machine 
Learning platform [10]. The model used the Higgs 
dataset with 11 million samples in the 28 features. 
The experiment was conducted using the KNN 
machine learning algorithm. The value of K used 
by the authors was 5 on the dataset for both 
platforms. The results indicated that for small 
datasets, the performance of the Spark increased 
by 4.5-5; for large datasets, the performance was 
1.4-2 times higher than the Hadoop. 
For evaluating the performance of MPI with 
Apache Spark, D. S Kumar et al. proposed a 
Twitter sentimental analysis on Twitter data[19]. 
The methodology was to read tweets line by line 
and then count positive and negative words. The 
dataset used for this experiment was 7GB, 
500GB, 100GB, and 1TB. The results revealed 
that the execution time of MPI was 2 times greater 
than the execution time of Spark. 
L.Xia et al. proposed a unified model named 
Blaze for handling high energy physics (HEP) big 
data [81]. It modified the Spark to add the 
message passing facility by OpenMPI. This 
model is used in data computer memory for 
efficient communication. HEP data was 
partitioned and used in parallel. The Spark 
computing engine was responsible for task 
allocation, and inter-task MPI was implemented. 
This model achieved 70% performance 
improvement as compared to the traditional Spark 
model.
X. Lu et al. experimented by combining the 
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features of MPI and Hadoop to reduce delay [20]. 
The proposed idea worked with the MPI-D 
Library built on point-to-point primitives on MPI 
for supporting arbitrary operations of 
MapReduce. The methodology for adapting MPI 
was to use a communication platform for 
Hadoop, which was divided into two groups; 
first, by comparing Hadoop modules with MPI 
primitives to analyze the bandwidth and latency 
of these two platforms. Secondly, they 
implemented an MPI-D library that worked with 
key-value pairs.8 nodes were used to build the 
experiment with the MPI-D library. The results 
revealed that their proposed prototype reduces 
the execution time by 44%. 
Another critical issue in combining HPC and Big 
data is the difference in their software stacks. The 
limitations interoperability between their 
programming models and languages is limited. 
To deal with this problem, the authors in [82] 
proposed a new model called IgnisHPC. This 
model was explicitly used for executing HPC and 
Big Data workloads. Moreover, IgnisHPC 
supports multiple language applications with 
Java Virtual Machine and non-Java Virtual 
Machine languages, as it relies on the MPI 
model. Hence, this framework takes advantage of 
network architectures and communication 
models. Moreover, the model executes 
MPI-based applications efficiently. The results 
showed that their model performed 1.1× to 3.9× 
faster than the traditional Spark.
M. M. Rathore et al. presented a Real-time and 
efficient stream data processing platform for 
analyzing big data [21]. The model worked with 
distributed and parallel environments of Hadoop 
with Apache Spark and GPU. The authors 
collected data from sources and then filtered it. 
After filtration, the data is transferred to the load 
balancing unit, where the controller and data 
nodes work together for parallel and distributed 
processing. The data nodes are attached with 
GPU, HDFS, and Apache Spark. Apache Spark 
uses its real-time processing feature and 
performs immediate action on data. The results 
reveal that the proposed system with GPU 
throughput processes 300-350 Mbps frames per 
second, whereas the CPU-based map-reduce 
framework has a throughput of 50 Mbps. 

2.2.  Graph Big Data Programming Models
Hadoop was mainly used for processing 
traditional data. It could also be used for 
processing graphs-based applications. The HADI

algorithm for efficient MapReduce jobs in graphs 
was introduced in [22]. Another PEGASUS 
library was developed on top of Hadoop for graph 
mining tasks [23], but multiple map-reduce jobs 
involved can cause overhead and affect efficiency. 
S. Sakr Proposed GraphLab project written in 
C++ [24]. It was used for graph processing Big 
Data with a high-level programming interface. It 
was used with both HDFS and POSIX file 
systems. It consisted of three main parts: a data 
graph, an update function, and a sync operation. 
Data graph used for user-modifiable program state 
and computational dependencies. Update function 
used to operate on data graph and transformed 
data in small overlapping contexts. It was used to 
represent user computations. Three operations, 
gather, apply, and scatter, were used in execution.     
G. Malewicz et al. developed another separate 
framework for graph processing based on the BSP 
model named Pregel [25]. It was based on 
distributed computing. The architecture used a 
directed graph for input to Pregel computation. 
The vertex of this graph defined user-defined 
operation, and edges were associated with the 
source vertex. After graph initialization, a series 
of steps were performed in a sequence of super 
steps. After completion of tasks, all vertices vote 
to halt, and the process is terminated. An 
experiment was performed with a single-source 
shortest path on 300 multicore commodity PCs. 
800 worker tasks were initiated, and it was 
observed that the running time of the graph took 
10 minutes.
Z. Tian et al. proposed a BSP model for 
agent-based simulations [83]. The authors created 
a temporary artificial network for experimenting 
with simulation locally. They developed 
CloudCity, a distributed engine to improve the 
communication and locality in these simulations. 
The main area of concern was to improve the 
tolerance for distributed systems. To reduce the 
communication overhead, the author proposed a 
double buffering mechanism. They compared this 
framework with Giraph, GraphX, and Apache. 
The performance of this model was 100 times 
faster than Spark.
U. Kang Proposed a graph-based framework 
called GBASE on top of Hadoop [26]. It was 
deployed on the Yahoo Hadoop cluster. This 
framework comprised two components: The 
indexing stage and the query stage. The raw graph 
was given as input to the framework. The 
indexing stage then clustered it and divided it into 
blocks. Then these blocks were compressed and 
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stored. GBASE was efficient in storage, 
indexing, and scalability. 
S. Sakr proposed the Apache Giraph model based 
on the BSP model in 2012 [24]. It works in super 
steps. All graph processing programs were 
expressed as iteration sequences in super steps. It 
worked on Master-Slave architecture. The master 
node assigns partitions to a vertex which act as 
vertices. It used Zookeeper for synchronization. 
R.S. Xin introduced the GraphX framework 
based on a resilient distributed graph system in 
Spark [27]. GraphX produced the resilient 
distributed graph (RDG) using RDDs. Two 
graph-based algorithms, Pregel and PowerGraph, 
were implemented using RDGs. GraphX 
interface provided the facility of graph 
construction along with graph transformations 
and queries.
P. Carbone provided support for graph processing 
using Gelly Flink [11]. Gelly is comprised of two 
datasets: the vertices and edges dataset. These 
dataset properties were used to generate a graph. 
K. Siddique et al. proposed a new research 
direction in big data by introducing  Apache 
Hama based on BSP [28]. The authors illustrated 
the architecture of Apache Hama in three major 
components: BSP master, Zookeeper, and Groom 
server. The BSP master was responsible for 
assigning tasks to Groom Server. Zookeepers 
acted as barrier synchronization. The BSP master 
supported the fault-tolerant property.
Siddique et al. worked on Apache Hama and 
discussed its architecture, advantages, and 
shortcomings[29]. They compared Apache Hama 
with other big data programming models, 
Apache Yarn, Apache Giraph, MapReduce, and 
Apache Spark. Apache Hama's core architecture 
was based on a BSP model. Apache Hama was 
useful for complex iterative applications and 
outperformed MapReduce in this domain. 
Apache Spark outperformed Hama in terms of 
usability. Hama outperformed MapReduce and 
Spark on top k joins on large datasets. Apache 
Giraph was not used for real-time processing, 
machine learning, and repartitioning. Hama used 
traditional graph partitioning techniques.
L.Y. Ho proposed another graph-based model 
named Kylin [30]. It was based on BSP but with 
three optimization techniques: vertex-weighted 
partitioning, pull messaging, and lazy vertex 
loading. This model outperformed Apache Hama 
up to five times due to efficient optimization 
techniques. Z. Wang proposed a new BC-BSP+ 
model based on BSP [31]. This model provided

efficient and flexible configurations and graph 
partitioning techniques. This model used the disk 
buffer for managing data. BC-BSP+ provided 
simple APIs to users for implementing graph 
structures. The experiments were performed by 
running the PageRank algorithm. The results 
showed that BC-BSP+ outperformed the Hama 
and Giraph. The running time of BC-BSP+ was 
twice faster than Hama and six times faster than 
Giraph.  
R. Chen et al. worked on graph processing 
frameworks and proposed a new model for graph 
processing named Cyclops and CyclopsMT [32]. 
Cyclops was based on Master-Slave architecture. 
The working model was based on Pregel and 
Hama's core. In Cyclops, the master used to send 
replicas to other necessary nodes. Cyclop's 
performance compared to Hama was 2.06X using 
the Metis partition algorithm. T. Li et al. proposed 
a GraphZ framework for graph processing based 
on BSP [33]. It consisted of three components: 
master node, server node, and storage node. This 
model used the ZHT server. It was tested by 
implementing the PageRank algorithm on a 
different number of machines. It was considered 
best for load balancing and data locality compared 
to Hama.
G. Dai et al. proposed a new framework for graph 
processing named FGPG [34]. This framework 
consisted of processing kernels, block RAMs, and 
FGPG chips. On-chip cache mechanism for data 
locality in the graph was implemented. The 
experiment was performed by implementing 
Breadth-First Search (BFS) in Twitter data. The 
proposed framework did not achieve 
state-of-the-art performance on FGPG.
S. Aridhi et al. proposed a framework BLADYG 
for dynamic graph processing [35]. BLADYG 
was used to collect online graph data using HDFS, 
Database, or Amazon S3. Data can be 
stream-based or complete with one graph. Graph 
Partitioning techniques were also applied. R. 
Dathathri et al. proposed Gluon to improve 
communication optimization in existing 
frameworks for distributed graph analytics [36]. 
M. Twenty et al. proposed GraphOpt to improve 
the performance of existing frameworks Giraph 
and GraphX [37]. Moreover, it was used for three 
optimization algorithms. Experiments were 
performed on different benchmarks and showed 
that performance was increased up to 47.8% using 
random search and 5.7% on average.W. Fan et al. 
[38] proposed a GraphScope framework for 
parallel and distributed graph processing. It 
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consisted of data flow runtime for distributed 
execution of graph processing. The architecture 
also included the graph library to perform 
standard graph computations. This framework 
can be implemented in cyber security 
monitoring, fraud detection, and link prediction. 
It was 34.7 times faster on iterative graph queries 
as compared to PowerGraph. W. Daluwatta et al. 
proposed a CGraph framework for graph 
processing [39]. It was based on graph 
repartitioning techniques to reduce the overhead. 
It improved performance up to 3.9 times 
compared to another graph-based Chaos 
framework. 

2.3.  Query Big Data Programming Models
S.Arora et al. emphasized the problem of 
MapReduce Hadoop that Java developers were 
required to perform any task on this model [40]. 
The authors explained two new implementations 
of the big data programming model SQL. Yahoo 
proposed Apache Pig to resolve the issue of a few 
available Java developers. They introduced a 
new language named Pig Latin, similar to SQL. 
Pig Latin was found to replace a hundred lines of 
Java code into four lines of Apache Hive 
proposed by Facebook and used this model on 
top of Hadoop for ease of use. It used an 
SQL-like query language called HQL. Apache 
Hive architecture comprised three main 
components: Hive client, driver, and Hadoop. 
The limitation of Apache Hive was latency issues 
for hive queries and was not suited for low-level 
updates. 
V. Garg focused on the problem of using Apache 
Hive for big data that increases the execution 
time of tasks [41]. The author proposed a 
multiple query optimization (MQO) component 
to reduce the execution time. A new architecture 
of Apache Hive named distributed Hive was 
proposed. The user submitted Hive Queries in 
this architecture through a web interface or 
command line interface. Incoming queries were 
suspected and made common global queries. 
These global queries were passed to the Driver 
component that passed the query to the compiler. 
The compiler generated a logical plan that DAG 
uses for defining map-reduce tasks. An 
experiment was performed to evaluate the 
performance of distributed Hive by varying data 
sizes and several queries. It was observed that the 
execution time of queries with MQO was 50% 
reduced compared to conventional Hive 

architecture. In [84], the Apache hive model,  
MongoDB, and Microsoft SQL server are 
analyzed to construct the data warehouse for 
online learning platforms. The corpus construc-
tion and descriptive analytics process were 
evaluated with the assistance of the above-defined 
technologies. The Apache hive was used for 
different contexts in handling big data design 
principles in constructing data warehouses. Also, 
it was implemented on an Azure virtual machine 
with the same region and hardware configuration. 
Their evaluations showed that the Apache Hive 
platform requires less maintenance and performs 
faster in contrast to MongoDB and Microsoft 
SQL. This is because the scalability mechanism of 
Hive's used commodity hardware and the simpli-
fied mechanism of this programming model 
favors this decision.
     K. Bansal et al. worked on Apache Pig and 
Apache Hive and experimented with massive 
datasets to analyze their performance [90-96]. A 
dataset was installed on Hadoop, and different 
queries were performed to extract data using 
Apache Pig and Apache Hive. The authors 
explained the architecture of Apache Pig and 
Apache Hive. Apache Pig was based on the Pig 
Latin language, which provided a high-level 
program of Java MapReduce jobs. Apache Hive 
was based on an SQL-like language called 
HiveQL. A medical dataset of 125,087 records 
from the United States was used to experiment. 
The authors observed that on increasing dataset 
size, Hive was slow in execution as compared to 
Pig. Regarding Storage, Hive was more efficient 
for data extraction than Pig. For ease of use, Pig 
was considered difficult to use because some 
knowledge of Java was required. On the other 
hand, Hive was easy to use because of the 
SQL-like structure. In terms of cost, both Apache 
Hive and Apache Pig were cost-effective.

3. BIG DATA BENCHMARKS
Benchmarks are used to compare the performance 
of big data programming models. A series of 
experiments and tests are performed to evaluate 
the programming models. The Benchmark 
process comprises five steps: 
planning step, generating data, generating data, 
developing tests, execution of tests, and evalua-
tion and analysis of results. Some critical 
extensive data benchmarks are presented in Table 
3 with their characteristics and description.  
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Table 2: Summary of Big Data Programming Models, the frameworks based on those models with 

their respective pros and cons 

Table 3: Big Data Benchmarks for different significant data programming paradigms with their 

characteristics

Ref Programming Model Framework Methodology Pros Cons

Traditional Big Data Programming Models

Graph Big Data Programming Models

Query Big Data Programming Models

[6]

[11]

[43]

[25]

[28]

[41]

[40]

[44] YCSB

Grid Mix

TPC

Big Bench

[45]

[46]

[47]

MapReduce

Directed Acyclic 
Graph (DAG)

Message Passing I
nterface (MPI)

Bulk synchronous 
parallel (BSP)

Bulk synchronous 
parallel (BSP)

Hadoop: 
MapReduce 
implementation

Apache Flink

Open MPI

The model, along with its file 
system HDFS takes advantage of 
"map" and "reduce" functions for 
solving big data problems in a 
distributed and parallel manner.
The model processes data in a 
stream, batch, and iterative way 
with an in-memory computation-
al mode.

Process to process communica-
tion for parallel processing of 
data.

Flexibility
Scalability
Fault-Tolerant
 

R e a l - t i m e 
Processing

Fast processing 
of Large-scale 
data, then 
Hadoop and 
Spark.

L o w - l e v e l 
programming,
Not for iterative 
tasks

M e m o r y 
Management

Not fault 
Tolerant

Pregel Using vertex-centric approach Efficient graph 
processing Slow speed

Apache Hama
BSP based three components:  
BSP master, Zookeeper, 
and Groom server

I m p r o v e d 
performance 
over Pregel

U n n e c e s s a r y 
communication in 
graph partition 
strategy

SQL

SQL

Distributed 
Hive

Apache Pig, 
Apache Hive

Add Multiple query optimization 
components in Hive

Abstraction over Hadoop using 
SQL-based language in Hive 
and Pig Latin in Pig

50% improved 
performance over 
traditional Hive

Easy to use and 
implement No storage system

Less speed

Ref Name Description Characteristics

Traditional Big Data Programming Models

No SQL databases

Suitable for Hadoop Clusters

Online Transaction Processing 
Workload

The industry benchmark for 
big data analytics for Hadoop

Used for comparing two non-relational 
databases (Hbase & Cassandra).

Suitable when multiple users perform the 
same jobs.
Workloads are implemented using 
different Arithmetic operators. De-facto 
standard for evaluating DBMS.
It comprises 30 queries and four key 
steps: system setup, generating, loading, 
and executing data.



4. DISCUSSION
In this section, we discuss the different 
challenges of big data programming models. We 
evaluate the programming models present in 
literature review according to parameters like 
in-memory data, batch processing, stream 
processing, efficient resource management, and 
iterative tasks. We also present a comparative 
table (Table 4) of the big data programming 
models based on performance, data processing, 
storage, fault-tolerant, suitable language, and 
machine learning support. Based on our 
extensive study, we analyze the challenges 
regarding big data programming models and 
provide solutions to these challenges. 
The most common and widely used MapReduce 
programming model has HDFS storage which is 
suitable for handling large data sets. This model 
mainly uses batch processing to manage the data 
effectively. It is able to handle the data if any fault 
occurs and is highly resilient. On the other hand, 
DAG is proposed to be an effective solution for 
real-time applications. It manages data in 
streams. MPI is not fault-tolerant, so it is 
important to note that this model is less suitable 
and might not be ideal for applications that 
demand high availability and robustness in case 
of node failure and system breakdown. 

Graph-based applications like social networks, 
network optimization, and maps require iterative 
computations. BSP-based models like Apache 
Hama, Pregel, GraphLab, and Apache Giraph are 
most suitable for graph-based data processing 
applications.  
The application developer must explicitly design 
and implement fault tolerance features, such as 
recovery through barriers, in the BSP model 
because fault tolerance is a great concern in graph 
processing applications. This manual fault 
tolerance method in the iterative BSP model 
causes data inconsistency and increases complexi-
ty. Alternative programming models like Apache 
Spark's GraphX offers automatic fault tolerance, 
which can be more advantageous than the manual 
implementation of this mechanism. We show 
these features in Figure3. 

Figure 3: Characteristics based categorization 
of Big Data Programming Models
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[48]

[49]

Cloudsuite

Hi-bench

Used for scale-out applications.

Four categories are classified into thirteen 
workloads. Perform operations on 
real-world applications and synthetic 
micro-benchmarks.

For testing the applications running on 
cloud platforms, Hadoop and GraphLab.

A shell script set published by Apache
License.

[48] Cloudsuite Used for scale-out applications.
For testing the applications running on 
cloud platforms, Hadoop and GraphLab.

[50] Graphalytics Distributed processing framework
Support RDF databases.Used for graph processing models

[51] Pig Mix 17 queries perform different operations.Query evaluation of pig based system

[52] Big Data Bench Perform three basic operations: relational 
queries, microbenchmark and essential 
data store operation. Generate six seeds 
model.

In the real world, synthetic and big data 
workloads.

Graph Big Data Programming Models

Query Big Data Programming Models



4.1.         Open Problems: Challenges and     
 Future   Directions

4.1.1.       Data Management
Data Management is a challenging task in 
programming models for handling big data. 
Hadoop uses disk management, which creates 
problems when processing data and causes 
delays. Therefore, in-memory data management 
was introduced in Apache Spark [119-120]. 
Although in-memory data management 
overcomes the problem of inefficient data 
retrieval, it also has a limitation in that data size 
must be small enough to load in memory or 
memory size must be large enough to store all 
data.

4.1.2.       Processing
There are different ways to process data in big 
data programming models. Some programming 
models like Hadoop process data in batches, 
whereas Spark can process data streams. 

4.1.3.      Lack of Professional Expertise
Developers also face the challenge of a lack of 
professional knowledge and expertise in different 
languages to handle big data programming 
frameworks [97-112]. Developers with expertise 
in query languages find it easy to deal SQL based 
models like Apache Pig and Apache Hive. 
Similarly, developers with poor knowledge of 
Java face problems in writing map-reduce 
programs for Apache Hadoop.

4.1.4.      Resource Management
Resource management is one of the crucial 
challenges in big data programming models. 
Managing the resources efficiently when working 
in a distributed environment is essential. Apache 
Hadoop and other versions of Hadoop, like 
Common Hadoop, were poor in resource 
utilization. 

4.1.5.      Graph Management
There was a problem with managing graph big 
data. Hadoop is not suitable for graph processing. 
Initially, Hadoop was used for graph processing. 
However, it was limited to up to two iterations and 
increased overhead. A developer must perform 
repeated map and reduce functions to perform 
iterative tasks in MapReduce [112-114]. 
This study aimed to find the most suitable 
programming model for developers and the 
research community. Different parameters and 
their associated best programming models 
[114-118] are presented in Table 5. We propose 
the following future directions:
i. Real-time processing of data should be 
implemented for big data applications
ii. For ease of programmers, different 
programming languages APIs should be 
introduced.
iii. Resources should be distributed in 
different clusters for the efficient development of 
big data applications
iv. For handling visual modality, different 
mechanisms for reducing overhead should be 
introduced
v. Apache Spark is a promising solution if 
the data is small that fits in memory.
vi. Apache Flink can be considered if the 
application requires batch, stream, or iterative 
processing. 
vii. If the application needs to process 
graph-based data, BSP-based models like Apache 
Hama, Pregel, GraphLab, and Apache Giraph can 
be used. 
viii. If the application requires handling big 
data in the backend and using query-based 
information in front, Apache Hive and Apache Pig 
are a clear winners.
ix. MapReduce is easy to use for Java 
developers from the language perspective
x. Apache Pig and Apache Hive can be the 
best choice for SQL developers

LGU Research Journal of Computer Science & Information Technology, Vol (7): Issue (3), LGURJCSIT   58

Table 4: Comparison of big data programming models based on different parameters

Ref
Programming 
Model Framework Performance Processing Storage API MLLanguage

Fault- 
Tolerant

Traditional Big Data Programming Models

[6] MapReduce Apache 
Hadoop

Fast for large 
data sizes.

Disk Batch-
processing HDFS Yes No Java Yes



Table 5: Application Requirement Vs. the most 
suitable big data programming model

5. CONCLUSION
In this paper, we performed a comprehensive 
survey of parallel and distributed big data 
programming models along with benchmarks for 
different types of classified under three broader 

categories: Traditional big data programming 
models (MapReduce, message passing interface, 
directed acyclic graph), graph-based big data 
programming models (Bulk synchronous parallel, 
Pregel, Hama), and SQL-Like (Apache hive, 
Apache pig, and distributed Hive). We provided a 
detailed overview of the frameworks of these 
programming models. We identified the 
parameters for big data programming models 
which can be used to assess the suitability of a 
model for a particular application. These 
parameters include fault tolerance, scalability, 
language, storage, and data processing. 
Furthermore, we overviewed the evaluation of 
these programming models. The application 
needs and the most suitable programming model 
was presented. We recommend the Apache Spark 
with in-memory storage for real-time data 
applications. Developers with basic SQL 
expertise should use models like Apache Hive and 
Apache pig. We also strongly suggest the 
implementation of APIs in other languages for the 
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[9] Hadoop Apache 
YARN Containers HDFS Yes No Java Yes

Yes

Yes

Yes

I m p r o v e d 
per fo rmance 
by separating 
resources

[12] [10] DAG Apache 
spark

In-memory
stream 
processing

Cloud, 
Amazon s3,
HDFS

Yes No Scala

Fast for 
p r o c e s s i n g 
real-time short 
data

[11] DAG Apache 
flink

Stream, 
batch and 
iterative

Memory-
based Yes No Java and 

Scala

I m p r o v e d 
per fo rmance 
over stream 
data

[9]
Message 
Passing 
Interface

Open 
MPI

In-memory
stream 
processing 

NFS and 
HFS No No C++

Fast for 
iterative tasks

No[25] BSP Pre-gel BSP 
Supersteps

Distributed 
and local Yes C++ 

API Java

I m p r o v e d 
per fo rmance 
by data on the 
same machine

No[40] SQL Apache pig Pig Scripts Database Yes No Pig Latin
Good on all 
types of data

No[40] SQL Apache hive Query 
Based HDFS Yes No Hive QLData Partition

Graph Big Data Programming Models

Query-based Big Data Programming Models

Parameters

In-Memory Data

Batch Processing

Stream Processing

Iterative Tasks

SQL

Efficient Resource 
Management

Apache Spark & Open
MPI

Apache Hadoop

Apache Flink

Bulk Synchronous 
Parallel

Apache Hive

Apache YARN

Programming Model



MapReduce model. We suggest using Apache 
YARN for efficient resource utilization. 
MapReduce model. We suggest using Apache 
YARN for efficient resource utilization. In the 
future, we also plan to perform experiments on 
the benchmarks to evaluate and compare the 
performance of these programming models. 
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